Skip to main content

Advertisement

Log in

Constructing Nanoscale Topology on the Surface of Microfibers Inhibits Fibroblast Fibrosis

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Fibrosis is a common problem in soft tissue regeneration, often caused by the differentiation of fibroblasts into myofibroblasts. Because of the nanoscale topology that regulates the mechanical transduction of cells, nanofibers or nanoparticles are commonly used to modulate fibroblast differentiation. However, the strength of nanofibers is insufficient, and the physiological toxicity of nanoparticles still remains to be verified. In this study, self-induced crystallization was used to construct nano-protrusions on the random and aligned polycaprolactone microfibers to regulate the behavior of fibroblasts. The results revealed that the mechanical properties of microfibers with a nanoscale topology were improved. Immunofluorescence staining manifested that nano-protrusions impeded the activation of integrins and vinculins, thereby inhibiting the nuclear transfer of Yes-associated protein, resulting in a decrease in the expression of α- smooth muscle actin. Nanoscale topology of microfibers hampered the activation of the Rho/ROCK signalling pathway. In general, we used a simple process to construct a fibrous scaffold with a micro-nano multilevel structure. This structure can hinder the transformation of fibroblasts into myofibroblasts on both random and aligned fibers, which is expected to prevent fibrosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007;117(3):524–9. https://doi.org/10.1172/JCI31487 .

    Article  CAS  Google Scholar 

  2. Wynn T. Cellular and molecular mechanisms of fibrosis. J Pathol 2008;214(2):199–210. https://doi.org/10.1002/path.2277 .

    Article  CAS  Google Scholar 

  3. Varkey M, Ding J, Tredget EE. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts. Biomaterials 2014;35(36):9591–8. https://doi.org/10.1016/j.biomaterials.2014.07.048 .

    Article  CAS  Google Scholar 

  4. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cell–substrate interface. Biomaterials 2012;33(21):5230–46. https://doi.org/10.1016/j.biomaterials.2012.03.079 .

    Article  CAS  Google Scholar 

  5. Hou Y, Xie W, Yu L, Camacho LC, Nie C, Zhang M, Haag R, Wei Q. Surface roughness gradients reveal topography-specific mechanosensitive responses in human mesenchymal stem cells. Small 2020;16(10):1905422. https://doi.org/10.1002/smll.201905422 .

    Article  CAS  Google Scholar 

  6. Mohd Razali NA, Lin W-C, Norzain NA, Yu Z-W. Controlling cell elongation and orientation by using microstructural nanofibre scaffolds for accelerating tissue regeneration. Mater Sci Eng C 2021;128:112321. https://doi.org/10.1016/j.msec.2021.112321 .

    Article  CAS  Google Scholar 

  7. Yang C, Yu Y, Wang X, Wang Q, Shang L. Cellular fluidic-based vascular networks for tissue engineering. Eng Regener 2021;2:171. https://doi.org/10.1016/j.engreg.2021.09.006 .

    Article  Google Scholar 

  8. Janmey PA, Miller RT. Mechanisms of mechanical signaling in development and disease. J Cell Sci 2011;124(1):9–18. https://doi.org/10.1242/jcs.071001 .

    Article  CAS  Google Scholar 

  9. Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. Prog Mater Sci 2021;117:100721. https://doi.org/10.1016/j.pmatsci.2020.100721 .

    Article  CAS  Google Scholar 

  10. Wang Z, Cui W. Two sides of electrospun fiber in promoting and inhibiting biomedical processes. Adv Ther 2021;4:2000096. https://doi.org/10.1002/adtp.202000096 .

    Article  CAS  Google Scholar 

  11. Sheikholeslam M, Wright MEE, Cheng N, Oh HH, Wang Y, Datu AK, Santerre JP, Amini-Nik S, Jeschke MG. Electrospun polyurethane-gelatin composite: a new tissue-engineered scaffold for application in skin regeneration and repair of complex wounds. ACS Biomater Sci Eng 2020;6(1):505–16. https://doi.org/10.1021/acsbiomaterials.9b00861 .

    Article  CAS  Google Scholar 

  12. Vashaghian M, Zandieh-Doulabi B, Roovers J-P, Smit TH. Electrospun matrices for pelvic floor repair: effect of fiber diameter on mechanical properties and cell behavior. Tissue Eng, Part A 2016;22(23–24):1305–16. https://doi.org/10.1089/ten.tea.2016.0194 .

    Article  CAS  Google Scholar 

  13. Chen H, Lui YS, Tan ZW, Lee JYH, Tan NS, Tan LP. Migration and phenotype control of human dermal fibroblasts by electrospun fibrous substrates. Adv Healthc Mater 2019;8(9):1801378. https://doi.org/10.1002/adhm.201801378 .

    Article  CAS  Google Scholar 

  14. Shrestha S, Jang SR, Shrestha BK, Park CH, Kim CS. Engineering 2D approaches fibrous platform incorporating turmeric and polyaniline nanoparticles to predict the expression of beta III-Tubulin and TREK-1 through qRT-PCR to detect neuronal differentiation of PC12 cells. Mater Sci Eng C 2021;127:112176. https://doi.org/10.1016/j.msec.2021.112176 .

    Article  CAS  Google Scholar 

  15. Kawakami Y, Nonaka K, Fukase N, D’Amore A, Murata Y, Quinn P, Luketich S, Takayama K, Patel KG, Matsumoto T, Cummins JH, Kurosaka M, Kuroda R, Wagner WR, Fu FH, Huard J. A cell-free biodegradable synthetic artificial ligament for the reconstruction of anterior cruciate ligament in a rat model. Acta Biomater 2021;121:275–87. https://doi.org/10.1016/j.actbio.2020.10.037 .

    Article  CAS  Google Scholar 

  16. Huang K, Su W, Zhang X, Chen C, Zhao S, Yan X, Jiang J, Zhu T, Zhao J. Cowpea-like bi-lineage nanofiber mat for repairing chronic rotator cuff tear and inhibiting fatty infiltration. Chem Eng J 2020;392:123671. https://doi.org/10.1016/j.cej.2019.123671 .

    Article  CAS  Google Scholar 

  17. Cai L, Xu D, Chen H, Wang L, Zhao Y. Designing bioactive micro-/nanomotors for engineered regeneration. Eng Regener 2021;2:109. https://doi.org/10.1016/j.engreg.2021.09.003 .

    Article  Google Scholar 

  18. Huang C-Y, Hu K-H, Wei Z-H. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration. Sci Rep 2016;6:37960. https://doi.org/10.1038/srep37960 .

    Article  CAS  Google Scholar 

  19. Zhong S, Zhang Y, Lim CT. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Eng Part B 2012;18(2):77–87. https://doi.org/10.1089/ten.teb.2011.0390 .

    Article  CAS  Google Scholar 

  20. Jana S, Bhagia A, Lerman A. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomed Mater 2019;14(6):065014.

    Article  CAS  Google Scholar 

  21. Elias KL, Price RL, Webster TJ. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 2002;23(15):3279–87. https://doi.org/10.1016/S0142-9612(02)00087-X .

    Article  CAS  Google Scholar 

  22. Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials 2005;26(15):2491–500. https://doi.org/10.1016/j.biomaterials.2004.07.011 .

    Article  CAS  Google Scholar 

  23. Yang G, Liu H, Hu X, Chen Z, Friis TE, Wang J, Xiao Y, Zhang S. Bio-inspired hybrid nanoparticles promote vascularized bone regeneration in a morphology-dependent manner. Nanoscale 2017;9(18):5794–805. https://doi.org/10.1039/C7NR00347A .

    Article  CAS  Google Scholar 

  24. Wang J, Yang G, Wang Y, Du Y, Liu H, Zhu Y, Mao C, Zhang S. Chimeric protein template-induced shape control of bone mineral nanoparticles and its impact on mesenchymal stem cell fate. Biomacromol 2015;16(7):1987–96. https://doi.org/10.1021/acs.biomac.5b00419 .

    Article  CAS  Google Scholar 

  25. Domingues RMA, Gomes ME, Reis RL. The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 2014;15(7):2327–46. https://doi.org/10.1021/bm500524s .

    Article  CAS  Google Scholar 

  26. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab 2010;95(11):2126–46. https://doi.org/10.1016/j.polymdegradstab.2010.06.007 .

    Article  CAS  Google Scholar 

  27. Chen G, Zhang H, Wang H, Wang F. Immune tolerance induced by immune-homeostatic particles. Eng Regener 2021;2:133. https://doi.org/10.1016/j.engreg.2021.09.007 .

    Article  Google Scholar 

  28. Falanga A, Siciliano A, Vitiello M, Franci G, Del Genio V, Galdiero S, Guida M, Carraturo F, Fahmi A, Galdiero E. Ecotoxicity evaluation of pristine and indolicidin-coated silver nanoparticles in aquatic and terrestrial ecosystem. Int J Nanomed 2020;15:8097–108. https://doi.org/10.2147/IJN.S260396 .

    Article  CAS  Google Scholar 

  29. Tay CY, Irvine SA, Boey FYC, Tan LP, Venkatraman S. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. Small 2011;7(10):1361–78. https://doi.org/10.1002/smll.201100046 .

    Article  CAS  Google Scholar 

  30. Xu Y, Shi G, Tang J, Cheng R, Shen X, Gu Y, Wu L, Xi K, Zhao Y, Cui W, Chen L. ECM-inspired micro/nanofibers for modulating cell function and tissue generation. Sci Adv 2020;6(48):eabc2036. https://doi.org/10.1126/sciadv.abc2036 .

    Article  CAS  Google Scholar 

  31. Li Y, Xiao Z, Zhou Y, Zheng S, An Y, Huang W, He H, Yang Y, Li S, Chen Y, Xiao J, Wu J. Controlling the multiscale network structure of fibers to stimulate wound matrix rebuilding by fibroblast differentiation. ACS Appl Mater Interfaces 2019;11(31):28377–86. https://doi.org/10.1021/acsami.9b06439 .

    Article  CAS  Google Scholar 

  32. Xie C, Gao Q, Wang P, Shao L, Yuan H, Fu J, Chen W, He Y. Structure-induced cell growth by 3D printing of heterogeneous scaffolds with ultrafine fibers. Mater Des 2019;181:108092. https://doi.org/10.1016/j.matdes.2019.108092 .

    Article  CAS  Google Scholar 

  33. Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020;8:3574. https://doi.org/10.1039/D0BM00157K .

    Article  CAS  Google Scholar 

  34. Taskin MB, Ahmad T, Wistlich L, Meinel L, Schmitz M, Rossi A, Groll J. Bioactive electrospun fibers: fabrication strategies and a critical review of surface-sensitive characterization and quantification. Chem Rev 2021;121(18):11194–237. https://doi.org/10.1021/acs.chemrev.0c00816 .

    Article  CAS  Google Scholar 

  35. Wang X-X, Yu G-F, Zhang J, Yu M, Ramakrishna S, Long Y-Z. Conductive polymer ultrafine fibers via electrospinning: Preparation, physical properties and applications. Prog Mater Sci 2021;115:100704. https://doi.org/10.1016/j.pmatsci.2020.100704 .

    Article  CAS  Google Scholar 

  36. Liu L, Zhang Y, Li C, Mao J, Wang F, Wang L. An enhanced periosteum structure/function dual mimicking membrane for in-situ restorations of periosteum and bone. Biofabrication 2021;13(3):035041. https://doi.org/10.1088/1758-5090/abf9b0 .

    Article  CAS  Google Scholar 

  37. Liping T, Paul T, Wenjing H. Surface chemistry influences implant biocompatibility. Curr Top Med Chem 2008;8(4):270–80. https://doi.org/10.2174/156802608783790901 .

    Article  Google Scholar 

  38. Jing X, Mi H-Y, Cordie TM, Salick MR, Peng X-F, Turng L-S. Fabrication of shish-kebab structured poly(epsilon-caprolactone) electrospun nanofibers that mimic collagen fibrils: effect of solvents and matrigel functionalization. Polymer 2014;55(21):5396–406. https://doi.org/10.1016/j.polymer.2014.08.061 .

    Article  CAS  Google Scholar 

  39. Zhang J, Zhang X, Wang C, Li F, Qiao Z, Zeng L, Wang Z, Liu H, Ding J, Yang H. Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation. Adv Healthc Mater 2021;10(3):2000604. https://doi.org/10.1002/adhm.202000604 .

    Article  CAS  Google Scholar 

  40. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine 2017;12(11):1335–52. https://doi.org/10.2217/nnm-2017-0017 .

    Article  CAS  Google Scholar 

  41. Pakshir P, Hinz B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol 2018;68–69:81–93. https://doi.org/10.1016/j.matbio.2018.01.019 .

    Article  CAS  Google Scholar 

  42. In Kim J, Kim CS. Harnessing nanotopography of PCL/collagen nanocomposite membrane and changes in cell morphology coordinated with wound healing activity. Mater Sci Eng C 2018;91:824–37. https://doi.org/10.1016/j.msec.2018.06.021 .

    Article  CAS  Google Scholar 

  43. Yang M, Guo Z, Li T, Li J, Chen L, Wang J, Wu J, Wu Z. Synergetic effect of chemical and topological signals of gingival regeneration scaffold on the behavior of human gingival fibroblasts. J Biomed Mater Res Part A 2019;107(9):1875–85. https://doi.org/10.1002/jbm.a.36708 .

    Article  CAS  Google Scholar 

  44. Schulz J-N, Plomann M, Sengle G, Gullberg D, Krieg T, Eckes B. New developments on skin fibrosis - Essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biol 2018;68–69:522–32. https://doi.org/10.1016/j.matbio.2018.01.025 .

    Article  CAS  Google Scholar 

  45. Peng Y, Chen Z, Chen Y, Li S, Jiang Y, Yang H, Wu C, You F, Zheng C, Zhu J, Tan Y, Qin X, Liu Y. ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Acta Biomater 2019;88:86–101. https://doi.org/10.1016/j.actbio.2019.02.015 .

    Article  CAS  Google Scholar 

  46. Huveneers S, Truong H, Faessler R, Sonnenberg A, Danen EHJ. Binding of soluble fibronectin to integrin alpha 5 beta 1 - link to focal adhesion redistribution and contractile shape. J Cell Sci 2008;121(15):2452–62. https://doi.org/10.1242/jcs.033001 .

    Article  CAS  Google Scholar 

  47. Atherton P, Stutchbury B, Jethwa D, Ballestrem C. Mechanosensitive components of integrin adhesions: role of vinculin. Exp Cell Res 2016;343(1):21–7. https://doi.org/10.1016/j.yexcr.2015.11.017 .

    Article  CAS  Google Scholar 

  48. Gallant ND, Michael KE, García AJ. Cell adhesion strengthening: contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol Biol Cell 2005;16(9):4329–40. https://doi.org/10.1091/mbc.e05-02-0170 .

    Article  CAS  Google Scholar 

  49. He Y, Xu H, Xiang Z, Yu H, Xu L, Guo Y, Tian Y, Shu R, Yang X, Xue C, Zhao M, He Y, Han X, Bai D. YAP regulates periodontal ligament cell differentiation into myofibroblast interacted with RhoA/ROCK pathway. J Cell Physiol 2019;234(4):5086–96. https://doi.org/10.1002/jcp.27312 .

    Article  CAS  Google Scholar 

  50. Martin K, Pritchett J, Llewellyn J, Mullan AF, Athwal VS, Dobie R, Harvey E, Zeef L, Farrow S, Streuli C, Henderson NC, Friedman SL, Hanley NA, Piper HK. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat Commun 2016;7(1):12502. https://doi.org/10.1038/ncomms12502 .

    Article  CAS  Google Scholar 

  51. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. Role of YAP/TAZ in mechanotransduction. Nature 2011;474(7350):179-U212. https://doi.org/10.1038/nature10137 .

    Article  CAS  Google Scholar 

  52. Mascharak S, DesJardins-Park HE, Davitt MF, Griffin M, Borrelli MR, Moore AL, Chen K, Duoto B, Chinta M, Foster DS, Shen AH, Januszyk M, Kwon SH, Wernig G, Wan DC, Lorenz HP, Gurtner GC, Longaker MT. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring. Science 2021;372(6540):362. https://doi.org/10.1126/science.aba2374 .

    Article  CAS  Google Scholar 

  53. Su J, Morgani SM, David CJ, Wang Q, Er EE, Huang Y-H, Basnet H, Zou Y, Shu W, Soni RK, Hendrickson RC, Hadjantonakis A-K, Massague J. TGF-beta orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature 2020;577(7791):566. https://doi.org/10.1038/s41586-019-1897-5 .

    Article  CAS  Google Scholar 

  54. Zhang T, Lin S, Shao X, Shi S, Zhang Q, Xue C, Lin Y, Zhu B, Cai X. Regulating osteogenesis and adipogenesis in adipose-derived stem cells by controlling underlying substrate stiffness. J Cell Physiol 2018;233(4):3418–28. https://doi.org/10.1002/jcp.26193 .

    Article  CAS  Google Scholar 

  55. Choi YJ, Koo JB, Kim HY, Seo JW, Lee EJ, Kim WR, Cho JY, Hahm KB, Hong SP, Kim DH, Yoo J-H. Umbilical cord/placenta-derived mesenchymal stem cells inhibit fibrogenic activation in human intestinal myofibroblasts via inhibition of myocardin-related transcription factor A. Stem Cell Res Ther 2019;10(1):291. https://doi.org/10.1186/s13287-019-1385-8 .

    Article  CAS  Google Scholar 

  56. Gilles G, McCulloch AD, Brakebusch CH, Herum KM. Maintaining resting cardiac fibroblasts in vitro by disrupting mechanotransduction. PLoS ONE 2020;15(10):e0241390. https://doi.org/10.1371/journal.pone.0241390 .

    Article  CAS  Google Scholar 

  57. Wu X, Verschut V, Woest ME, Ng-Blichfeldt J-P, Matias A, Villetti G, Accetta A, Facchinetti F, Gosens R, Kistemaker LEM. Rho-kinase 1/2 inhibition prevents transforming growth factor-beta-induced effects on pulmonary remodeling and repair. Front Pharmacol 2021;11:609509. https://doi.org/10.3389/fphar.2020.609509 .

    Article  CAS  Google Scholar 

  58. Bond JE, Kokosis G, Ren L, Selim MA, Bergeron A, Levinson H. Wound contraction is attenuated by fasudil inhibition of rho-associated kinase. Plast Reconstr Surg 2011;128(5):438e–50e. https://doi.org/10.1097/PRS.0b013e31822b7352 .

    Article  CAS  Google Scholar 

  59. Kim EM, Lee YB, Byun H, Chang H-K, Park J, Shin H. Fabrication of spheroids with uniform size by self-assembly of a micro-scaled cell sheet (μCS): the effect of cell contraction on spheroid formation. ACS Appl Mater Interfaces 2019;11(3):2802–13. https://doi.org/10.1021/acsami.8b18048 .

    Article  CAS  Google Scholar 

  60. Lee YB, Kim S-J, Kim EM, Byun H, Chang H-k, Park J, Choi YS, Shin H. Microcontact printing of polydopamine on thermally expandable hydrogels for controlled cell adhesion and delivery of geometrically defined microtissues. Acta Biomater 2017;61:75–87. https://doi.org/10.1016/j.actbio.2017.07.040 .

    Article  CAS  Google Scholar 

  61. Kishi T, Mayanagi T, Iwabuchi S, Akasaka T, Sobue K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget 2016;7(44):72113–30. https://doi.org/10.18632/oncotarget.12350 .

    Article  Google Scholar 

  62. Hui E, Moretti L, Barker TH, Caliari SR. The combined influence of viscoelastic and adhesive cues on fibroblast spreading and focal adhesion organization. Cell Mol Bioeng 2021;14:427–40. https://doi.org/10.1007/s12195-021-00672-1 .

    Article  CAS  Google Scholar 

  63. Hou Y, Yu L, Xie W, Camacho LC, Zhang M, Chu Z, Wei Q, Haag R. Surface roughness and substrate stiffness synergize to drive cellular mechanoresponse. Nano Lett 2020;20:748–57. https://doi.org/10.1021/acs.nanolett.9b04761 .

    Article  CAS  Google Scholar 

  64. Yang N, Williams J, Pekovic-Vaughan V, Wang P, Olabi S, McConnell J, Gossan N, Hughes A, Cheung J, Streuli CH, Meng Q-J. Cellular mechano-environment regulates the mammary circadian clock. Nat Commun 2017;8:14287. https://doi.org/10.1038/ncomms14287 .

    Article  CAS  Google Scholar 

  65. Liu W, Sun Q, Zheng Z-L, Gao Y-T, Zhu G-Y, Wei Q, Xu J-Z, Li Z-M, Zhao C-S. Topographic cues guiding cell polarization via distinct cellular mechanosensing pathways. Small 2022;18:2104328. https://doi.org/10.1002/smll.202104328 .

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by Shanghai Sailing Program (Grant No. 20YF1400800), Shanghai Science and Technology Development Fund (21S31900700), and 111 Project 2.0 (Grant no. BP0719035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaojing Li or Lu Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Li, X., Chen, J. et al. Constructing Nanoscale Topology on the Surface of Microfibers Inhibits Fibroblast Fibrosis. Adv. Fiber Mater. 4, 1219–1232 (2022). https://doi.org/10.1007/s42765-022-00165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00165-4

Keywords

Navigation