Skip to main content
Log in

Recombinant Omp2b antigen-based ELISA is an efficient tool for specific serodiagnosis of animal brucellosis

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Control of brucellosis as a worldwide zoonotic disease is based on vaccination of animals and diagnosis of infected cases to be eradicated. Accurate and rapid detection of infected animals is of critical importance for preventing the spread of disease. Current detection of brucellosis is based on whole-cell antigens and investigating serum antibodies against Brucella lipopolysaccharide (LPS). The critical disadvantage is misdiagnosis of vaccinated animals as infected ones and also cross-reactions with other Gram-negative bacteria. Recombinant outer membrane protein 2b (Omp2b) of Brucella abortus was evaluated as a novel serodiagnostic target in comparison to conventional tests which are based on LPS. Recombinant Omp2b (rOmp2b) was expressed in Escherichia coli BL21 and purified by Ni2+-based chromatography. rOmp2b was evaluated in an indirect enzyme-linked immunosorbent assay (ELISA) system for diagnosis of brucellosis, with sera from Brucella-infected mice along with negative sera and sera from mice which were inoculated with other Gram-negative species for assurance of specificity. Thereafter, cattle sera collected from different regions were assessed along with known negative and known positive serum samples. We found that Omp2b can discriminate between Brucella-infected animals and non-infected ones. Results for assessment of two hundred and fifty cattle sera by Omp2b-based indirect ELISA which were compared to Rose Bengal plate agglutination test (RBPT) and serum tube agglutination test (SAT) showed that our proposed procedure has the sensitivity of 88.5%, specificity of 100%, and accuracy of 90.8%. We suggest that recombinant Omp2b could be used as a protein antigen for diagnosis of brucellosis in domestic animals and can be evaluated for detection of human brucellosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boschiroli ML, Foulongne V, O’Callaghan D (2001) Brucellosis: a worldwide zoonosis. Curr Opin Microbiol 4(1):58–64

    CAS  PubMed  Google Scholar 

  2. Mirkalantari S, Zarnani AH, Nazari M, Irajian GR, Amirmozafari N. Brucella melitensis VirB12 recombinant protein is a potential marker for serodiagnosis of human brucellosis. Ann Clin Microbiol Antimicrob. 2017;16(1):8. Published 2017 Mar 3. doi:https://doi.org/10.1186/s12941-017-0182-4

  3. Mirkalantari S, Amirmozafari N, Kazemi B, Irajian G (2012) Molecular cloning of virB12 gene of Brucella melitensis 16M strain in pET28a vector. Asian Pac J Trop Med 5(7):511–513. https://doi.org/10.1016/S1995-7645(12)60089-3

    Article  CAS  PubMed  Google Scholar 

  4. Ramin B, MacPherson P (2011) Human brucellosis. Brucellose beim Menschen 100(5):305–307

    CAS  Google Scholar 

  5. Leylabadlo HE, Bialvaei AZ, Samadi KH (2015) Brucellosis in Iran: why not eradicated? Clin Infect Dis 61(10):1629–1630

    PubMed  Google Scholar 

  6. Yumuk Z, O’Callaghan D (2012) Brucellosis in Turkey -- an overview. Int J Infect Dis 16(4):e228–e235

    PubMed  Google Scholar 

  7. Singh BB, Dhand NK, Gill JP (2015) Economic losses occurring due to brucellosis in Indian livestock populations. Prev Vet Med 119(3–4):211–215

    CAS  PubMed  Google Scholar 

  8. Mangalgi SS, Sajjan AG, Mohite ST, Kakade SV (2015) Serological, clinical, and epidemiological profile of human brucellosis in rural India. Indian J Community Med : Off Publ Indian Assoc Prevent Soc Med 40(3):163–167

    Google Scholar 

  9. McDermott J, Grace D, Zinsstag J (2013) Economics of brucellosis impact and control in low-income countries. Rev Sci Tech 32(1):249–261

    CAS  PubMed  Google Scholar 

  10. Ulu-Kilic A, Metan G, Alp E (2013) Clinical presentations and diagnosis of brucellosis. Recent Patents Anti-Infect Drug Discov 8(1):34–41

    Google Scholar 

  11. Al Dahouk S, Sprague LD, Neubauer H (2013) New developments in the diagnostic procedures for zoonotic brucellosis in humans. Rev Sci Tech 32(1):177–188

    PubMed  Google Scholar 

  12. McGiven JA (2013) New developments in the immunodiagnosis of brucellosis in livestock and wildlife. Rev Sci Tech 32(1):163–176

    CAS  PubMed  Google Scholar 

  13. Yu WL, Nielsen K (2010) Review of detection of Brucella spp. by polymerase chain reaction. Croat Med J 51(4):306–313

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Al Dahouk S, Tomaso H, Nockler K, Neubauer H, Frangoulidis D (2003) Laboratory-based diagnosis of brucellosis--a review of the literature. Part II: serological tests for brucellosis. Clin Lab 49(11–12):577–589

    PubMed  Google Scholar 

  15. Mohseni K, Mirnejad R, Piranfar V, Mirkalantari S. A comparative evaluation of ELISA, PCR, and serum agglutination tests for diagnosis of Brucella using Human

  16. Corrente M, Desario C, Parisi A, Grandolfo E, Scaltrito D, Vesco G et al (2015) Serological diagnosis of bovine brucellosis using B. melitensis strain B115. J Microbiol Methods 119:106–109

    CAS  PubMed  Google Scholar 

  17. Mathias LA, Meirelles RB, Buchala FG (2007) Estabilidade do antígeno de célula total de Brucella abortus para uso no diagnóstico sorológico da brucelose bovina pela reação de fixação de complemento. Pesquisa Veterinária Brasileir 27(1):18–22

    Google Scholar 

  18. Gall D, Nielsen K (2004) Serological diagnosis of bovine brucellosis: a review of test performance and cost comparison. Rev Sci Tech 23(3):989–1002

    CAS  PubMed  Google Scholar 

  19. Lord VR, Schurig GG, Cherwonogrodzky JW, Marcano MJ, Melendez GE (1998) Field study of vaccination of cattle with Brucella abortus strains RB51 and 19 under high and low disease prevalence. Am J Vet Res 59(8):1016–1020

    CAS  PubMed  Google Scholar 

  20. Ko KY, Kim JW, Her M, Kang SI, Jung SC, Cho DH, Kim JY (2012) Immunogenic proteins of Brucella abortus to minimize cross reactions in brucellosis diagnosis. Vet Microbiol 156(3–4):374–380

    CAS  PubMed  Google Scholar 

  21. Delpino MV, Fossati CA, Baldi PC (2004) Occurrence and potential diagnostic applications of serological cross-reactivities between Brucella and other alpha-proteobacteria. Clin Diagn Lab Immunol 11(5):868–873

    PubMed  PubMed Central  Google Scholar 

  22. Nielsen K (2002) Diagnosis of brucellosis by serology. Vet Microbiol 90(1–4):447–459

    CAS  PubMed  Google Scholar 

  23. Nielsen K, Smith P, Widdison J, Gall D, Kelly L, Kelly W, Nicoletti P (2004) Serological relationship between cattle exposed to Brucella abortus, Yersinia enterocolitica O:9 and Escherichia coli O157:H7. Vet Microbiol 100(1–2):25–30

    CAS  PubMed  Google Scholar 

  24. Cloeckaert A, Vizcaino N, Paquet JY, Bowden RA, Elzer PH (2002) Major outer membrane proteins of Brucella spp.: past, present and future. Vet Microbiol 90(1–4):229–247

    CAS  PubMed  Google Scholar 

  25. Cloeckaert A, Zygmunt MS, Bezard G, Dubray G (1996) Purification and antigenic analysis of the major 25-kilodalton outer membrane protein of Brucella abortus. Res Microbiol 147(4):225–235

    CAS  PubMed  Google Scholar 

  26. Cloeckaert A, Baucheron S, Vizcaino N, Zygmunt MS (2001) Use of recombinant BP26 protein in serological diagnosis of Brucella melitensis infection in sheep. Clin Diagn Lab Immunol 8(4):772–775

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Salih-Alj Debbarh H, Cloeckaert A, Bezard G, Dubray G, Zygmunt MS (1996) Enzyme-linked immunosorbent assay with partially purified cytosoluble 28-kilodalton protein for serological differentiation between Brucella melitensis-infected and B. melitensis Rev.1-vaccinated sheep. Clin Diagn Lab Immunol 3(3):305–308

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chaudhuri P, Prasad R, Kumar V, Gangaplara A (2010) Recombinant OMP28 antigen-based indirect ELISA for serodiagnosis of bovine brucellosis. Mol Cell Probes 24(3):142–145

    CAS  PubMed  Google Scholar 

  29. Gupta VK, Verma DK, Singh SV, Vihan VS (2007) Serological diagnostic potential of recombinant outer membrane protein (Omp31) from Brucella melitensis in goat and sheep brucellosis. Small Rumin Res 70(2–3):260–266

    Google Scholar 

  30. Piranfar V, Sharif M, Hashemi M, Vahdati AR, Mirnejad R (2015) Detection and discrimination of two Brucella species by multiplex real-time PCR and high-resolution melt analysis curve from human blood and comparison of results using RFLP. Iran J Basic Med Sci 18(9):909–914

    PubMed  PubMed Central  Google Scholar 

  31. Nagalingam M, Shome R, Balamurugan V, Shome BR, NarayanaRao K, Vivekananda, et al. Molecular typing of Brucella species isolates from livestock and human. Trop Anim Health Prod 2012;44(1):5–9

    PubMed  Google Scholar 

  32. Pishva E, Salehi R, Hoseini A, Kargar A, Taba FE, Hajiyan M et al (2015) Molecular typing of Brucella species isolates from human and livestock bloods in Isfahan province. Adv Biomed Res 4:104

    PubMed  PubMed Central  Google Scholar 

  33. Schmoock G, Ehricht R, Melzer F, Elschner M, Tomaso H, Neubauer H, al Dahouk S (2011) Development of a diagnostic multiplex polymerase chain reaction microarray assay to detect and differentiate Brucella spp. Diagn Microbiol Infect Dis 71(4):341–353

    CAS  PubMed  Google Scholar 

  34. Imaoka K, Kimura M, Suzuki M, Kamiyama T, Yamada A (2007) Simultaneous detection of the genus Brucella by combinatorial PCR. Jpn J Infect Dis 60(2–3):137–139

    CAS  PubMed  Google Scholar 

  35. Sung KY, Jung M, Shin MK, Park HE, Lee JJ, Kim S, Yoo HS (2014) Induction of immune responses by two recombinant proteins of brucella abortus, outer membrane proteins 2b porin and Cu/Zn superoxide dismutase, in mouse model. J Microbiol Biotechnol 24(6):854–861

    CAS  PubMed  Google Scholar 

  36. Aghababa H, Mohabati Mobarez A, Khoramabadi N, Behmanesh M, Mahdavi M, Tebianian M, Nejati M (2014) A comparative approach to strategies for cloning, expression, and purification of mycobacterium tuberculosis mycolyl transferase 85B and evaluation of immune responses in BALB/c mice. Mol Biotechnol 56(6):487–497

    CAS  PubMed  Google Scholar 

  37. National Research Council Committee for the Update of the Guide for the CUoL, Animals. (2011) The National Academies Collection: Reports funded by National Institutes of Health. Guide for the Care and Use of Laboratory Animals. The National Academies Collection: Reports funded by National Institutes of Health. 8th ed. Washington (DC): National Academies Press (US) National Academy of Sciences

  38. Haque N, Bari MS, Hossain MA, Muhammad N, Ahmed S, Rahman A, Hoque SM, Islam A (2011) An overview of brucellosis. Mymensingh Med J 20(4):742–747

    CAS  PubMed  Google Scholar 

  39. Ducrotoy MJ, Bertu WJ, Ocholi RA, Gusi AM, Bryssinckx W, Welburn S, Moriyón I (2014) Brucellosis as an emerging threat in developing economies: lessons from Nigeria. PLoS Negl Trop Dis 8(7):e3008

    PubMed  PubMed Central  Google Scholar 

  40. Neubauer H (2010) Brucellosis: new demands in a changing world. Prilozi. 31(1):209–217

    CAS  PubMed  Google Scholar 

  41. Yang X, Skyberg JA, Cao L, Clapp B, Thornburg T, Pascual DW (2013) Progress in vaccine development. Front Biol 8(1):60–77

    Google Scholar 

  42. Adone R, Pasquali P (2013) Epidemiosurveillance of brucellosis. Rev Sci Tech 32(1):199–205

    CAS  PubMed  Google Scholar 

  43. Simborio HL, Lee JJ, Bernardo Reyes AW, Hop HT, Arayan LT, Min W et al (2015) Evaluation of the combined use of the recombinant Brucella abortus Omp10, Omp19 and Omp28 proteins for the clinical diagnosis of bovine brucellosis. Microb Pathog 83–84:41–46

    PubMed  Google Scholar 

  44. Ahmed IM, Khairani-Bejo S, Hassan L, Bahaman AR, Omar AR (2015) Serological diagnostic potential of recombinant outer membrane proteins (rOMPs) from Brucella melitensis in mouse model using indirect enzyme-linked immunosorbent assay. BMC Vet Res 11(1):275

    PubMed  PubMed Central  Google Scholar 

  45. Tiwari S, Kumar A, Thavaselvam D, Mangalgi S, Rathod V, Prakash A, Barua A, Arora S, Sathyaseelan K (2013) Development and comparative evaluation of a plate enzyme-linked immunosorbent assay based on recombinant outer membrane antigens Omp28 and Omp31 for diagnosis of human brucellosis. Clin Vaccine Immunol 20(8):1217–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lim JJ, Kim DH, Lee JJ, Kim DG, Min W, Lee HJ et al (2012) Evaluation of recombinant 28 kDa outer membrane protein of Brucella abortus for the clinical diagnosis of bovine brucellosis in Korea. J Vet Med Sci 74(6):687–691

    CAS  PubMed  Google Scholar 

  47. Tiwari AK, Kumar S, Pal V, Bhardwaj B, Rai GP (2011) Evaluation of the recombinant 10-kilodalton immunodominant region of the BP26 protein of Brucella abortus for specific diagnosis of bovine brucellosis. Clin Vaccine Immunol 18(10):1760–1764

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu WX, Hu S, Qiao ZJ, Chen WY, Liu LT, Wang FK, Hua RH, Bu ZG, Li XR (2011) Expression, purification, and improved antigenic specificity of a truncated recombinant bp26 protein of Brucella melitensis M5-90: a potential antigen for differential serodiagnosis of brucellosis in sheep and goats. Biotechnol Appl Biochem 58(1):32–38

    CAS  PubMed  Google Scholar 

  49. Kumar S, Tuteja U, Kumar A, Batra HV (2008) Expression and purification of the 26 kDa periplasmic protein of Brucella abortus: a reagent for the diagnosis of bovine brucellosis. Biotechnol Appl Biochem 49(Pt 3):213–218

    CAS  PubMed  Google Scholar 

  50. Thepsuriyanont P, Intarapuk A, Chanket P, Tunyong W, Kalambaheti T (2014) ELISA for brucellosis detection based on three Brucella recombinant proteins. Southeast Asian J Trop Med Public Health 45(1):130–141

    CAS  PubMed  Google Scholar 

  51. Cassataro J, Delpino MV, Velikovsky CA, Bruno L, Fossati CA, Baldi PC (2002) Diagnostic usefulness of antibodies against ribosome recycling factor from Brucella melitensis in human or canine brucellosis. Clin Diagn Lab Immunol 9(2):366–369

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wanke MM, Delpino MV, Baldi PC (2002) Comparative performance of tests using cytosolic or outer membrane antigens of Brucella for the serodiagnosis of canine brucellosis. Vet Microbiol 88(4):367–375

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiva Mirkalantari or Nima Khoramabadi.

Ethics declarations

Animal experiments were carried out under Tarbiat Modares Institutional ethics guidelines on laboratory animals and National ethics guidelines for using laboratory animals.

Additional information

Responsible Editor: Roxane Piazza

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatankhah, M., Beheshti, N., Mirkalantari, S. et al. Recombinant Omp2b antigen-based ELISA is an efficient tool for specific serodiagnosis of animal brucellosis. Braz J Microbiol 50, 979–984 (2019). https://doi.org/10.1007/s42770-019-00097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00097-z

Keywords

Navigation