Skip to main content

Advertisement

Log in

Topography and disturbance explain mountain tapir (Tapirus pinchaque) occupancy at its southernmost global range

  • Original Article
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The mountain tapir (Tapirus pinchaque), the smallest of the three American tapirs, is the least studied species of the family Tapiridae and is classified as Endangered on the IUCN Red List of Globally Threatened Species. It plays a critical role in the functioning of ecosystems throughout the northern Andes as a seed predator and disperser of a wide diversity of plant species. Despite the ecological importance and conservation status of this species, information about its population ecology and habitat use are limited. Here, we assessed the influence of environmental (i.e., elevation, slope, NDVI) and anthropogenic disturbance, i.e., distance to roads (there is evidence that roads influence the detectability of tapirs, because it can act as barriers) on the occupancy of mountain tapirs. We conducted a camera trapping survey (115 camera-trap stations) during the dry season of 2016 along elevations from 1600 to 3600 m above sea level (m. a. s. l.) at the Tabaconas Namballe National Sanctuary (TNNS) in northern Peru. We detected the mountain tapir 128 times at 48 sites over 11,753 cumulative camera-days. The occupancy of the species was 0.48 and ranged from 0.36 to 0.61, and detectability was 0.12 ranged from 0.09 to 0.15. Occupancy was significantly and positively correlated with distance to roads and negatively with slope of terrain, and detectability was correlated with distance to water sources. We also found that mountain tapirs display predominantly nocturnal habits. Our results provide evidence that mountain tapir habitat use is probably affected by distance to roads. Mountain tapirs are currently sheltered within protected areas; however, increased land-use changes throughout their southern geographical range (especially outside protected areas) challenge their conservation, highlighting the urgent need for practical and effective actions that will ensure their long-term viability, such as conservation corridors among protected areas to ensure connectivity of tapir populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acosta H, Cavelier J, Londoño S (1996) Aportes al Conocimiento de la Biologia de la Danta de Montana, Tapirus pinchaque, en los Andes Centrales de Colombia. Biotropica 28:258–266

    Google Scholar 

  • Ahumada JA, Hurtado J, Lizcano D (2013) Monitoring the status and trends of tropical forest terrestrial vertebrate communities from camera trap data: a tool for conservation. PLoS ONE 8:e73707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson TM, White S, Davis B, Erhardt R, Palmer M, Swanson A, Kosmala M, Packer C (2016) The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philos Trans R Soc B: Biol Sci 371:20150314

    Google Scholar 

  • Bennie JJ, Duffy JP, Inger R, Gaston KJ (2014) Biogeography of time partitioning in mammals. Proc Natl Acad Sci 111:13727–13732

    CAS  PubMed  Google Scholar 

  • Blake JG, Mosquera D, Loiselle BA, Swing K, Guerra J, Romo D (2012) Temporal activity patterns of terrestrial mammals in lowland rainforest of eastern Ecuador. Ecotropica 18:137–146

    Google Scholar 

  • Bonar M, Manseau M, Geisheimer J, Bannatyne T, Lingle S (2016) The effect of terrain and female density on survival of neonatal white-tailed deer and mule deer fawns. Ecol Evol 6:4387–4402

    PubMed  PubMed Central  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodal inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Bayne E, Boutin S (2015) Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J Appl Ecol 52:675–685

    Google Scholar 

  • Buytaert W, Celleri R, Willems P, Bièvre BD, Wyseure G (2006) Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol 329:413–421

    Google Scholar 

  • Castellanos A (2013) Iridium/GPS telemetry to study home range and population density of mountain tapirs in the Rio Papallacta watershed, Ecuador. Tapir Conserv Newslett IUCN/SSC Tapir Spec Group 22:20–25

    Google Scholar 

  • Cavelier J, Lizcano D, Yerena E, Downer C (2010) The mountain tapir (Tapirus pinchaque) and Andean bear (Tremarctos ornatus): the two large mammals in South American tropical montage cloud forests. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests: science for conservation and management. Cambridge University Press, Cambridge, pp 172–181

    Google Scholar 

  • Cove MV, Pardo Vargas LE, de la Cruz JC, Spínola RM, Jackson VL, Saénz JC, Chassot O (2013) Factors influencing the occurrence of the Endangered Baird's tapir Tapirus bairdii: potential flagship species for a Costa Rican biological corridor. Oryx 48:402–409

    Google Scholar 

  • Creech TG, Epps CW, Monello RJ, Wehausen JD (2016) Predicting diet quality and genetic diversity of a desert-adapted ungulate with NDVI. J Arid Environ 127:160–170

    Google Scholar 

  • Cruz P, Paviolo A, Bó RF, Thompson JJ, Di Bitetti MS (2014) Daily activity patterns and habitat use of the lowland tapir (Tapirus terrestris) in the Atlantic Forest. Mamm Biol 79:376–383

    Google Scholar 

  • de la Torre JA, Rivero M, Camacho G, Álvarez-Márquez LA (2018) Assessing occupancy and habitat connectivity for Baird’s tapir to establish conservation priorities in the Sierra Madre de Chiapas, Mexico. J Nat Conserv 41:16–25

    Google Scholar 

  • Dearborn KD, Danby RK (2017) Aspect and slope influence plant community composition more than elevation across forest–tundra ecotones in subarctic Canada. J Veg Sci 28:595–604

    Google Scholar 

  • Doherty TS, Dickman CR, Glen AS, Newsome TM, Nimmo DG, Ritchie EG, Vanak AT, Wirsing AJ (2017) The global impacts of domestic dogs on threatened vertebrates. Biol Cons 210:56–59

    Google Scholar 

  • Downer CC (1996) The mountain tapir, endangered ‘flagship’ species of the high Andes. Oryx 30:45–58

    Google Scholar 

  • Downer CC (2001) Observations on the diet and habitat of the mountain tapir (Tapirus pinchaque). J Zool 254:279–291

    Google Scholar 

  • Farris ZJ, Gerber BD, Karpanty S, Murphy A, Andrianjakarivelo V, Ratelolahy F, Kelly MJ (2015) When carnivores roam: temporal patterns and overlap among Madagascar's native and exotic carnivores. J Zool 296:45–57

    Google Scholar 

  • Feldhamer GA, Drickamer LC, Vessey SH, Merritt JF, Krajewski C (2015) Mammalogy: adaptation, diversity, ecology, 4th edn. Jhons Hopkins University Press, Baltimore

    Google Scholar 

  • Ferreguetti ÁC, Pereira-Ribeiro J, Prevedello JA, Tomás WM, Rocha CFD, Bergallo HG (2018) One step ahead to predict potential poaching hotspots: modeling occupancy and detectability of poachers in a neotropical rainforest. Biol Cons 227:133–140

    Google Scholar 

  • Ferreguetti ÁC, Tomás WM, Bergallo HG (2015) Density, occupancy, and activity pattern of two sympatric deer (Mazama) in the Atlantic Forest, Brazil. J Mammal 96:1245–1254

    Google Scholar 

  • Ferreguetti ÁC, Tomás WM, Bergallo HG (2017) Density, occupancy, and detectability of lowland tapirs, Tapirus terrestris, in Vale Natural Reserve, southeastern Brazil. J Mammal 98:114–123

    Google Scholar 

  • Fiske I, Chandler R (2011) Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43:1–23

    Google Scholar 

  • Garroutte EL, Hansen AJ, Lawrence RL (2016) Using NDVI and EVI to map spatiotemporal variation in the biomass and quality of forage for migratory elk in the Greater Yellowstone Ecosystem. Remote Sens 8:404

    Google Scholar 

  • Gatti A, Seibert JB, Moreira DO (2018) A predation event by free-ranging dogs on the lowland tapir in the Brazilian Atlantic Forest. Anim Biodivers Conserv 41:311–314

    Google Scholar 

  • Grignolio S, Brivio F, Apollonio M, Frigato E, Tettamanti F, Filli F, Bertolucci C (2018) Is nocturnal activity compensatory in chamois? A study of activity in a cathemeral ungulate. Mamm Biol 93:173–181

    Google Scholar 

  • Grimwood I (1969) Notes on the distribution and status of some Peruvian mammals 1968. American Committee for International Wildlife Protection. New York Zoological Society Special Publication No. 21

  • Heiberger RM, Holland B (2015) Statistical analysis and data display: an intermediate course with examples in R, 2nd edn. Springer, New York

    Google Scholar 

  • Herzog, S.K., Martinez, R., Jørgensen, P.M., Tiessen, H., 2011. Climate Change and Biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), p. 348

  • Hiyo FL (2018) Estacionalidad en el uso del hábitat y dieta en una especie en peligro de extinción: Tapirus pinchaque (Roulin, 1829)“Tapir andino”, en el Santuario Nacional Tabaconas-Namballe. Cajamarca, Perú

    Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Google Scholar 

  • Hutchins M, Kleiman DG, Geist V, McDade MC (2003) Grzimek’s animal life encyclopedia. volumes 12–16, mammals I–V, 2nd edn. Gale Group, Farmington Hills

    Google Scholar 

  • Josse C, Navarro G, Encarnación F, Tovar A, Comer P, Ferreira W, Rodríguez F, Saito J, Sanjurjo J, Dyson J, Rubin de Celis E, Zárate R, Chang J, Ahuite M, Vargas C, Paredes F, Castro W, Maco J, Reátegui F (2007) Sistemas ecológicos de la cuenca amazónica de perú y bolivia Clasificación y mapeo. NatureServe, Arlington

    Google Scholar 

  • Karanth KU (1995) Estimating tiger Panthera tigris populations from camera-trap data using capture—recapture models. Biol Cons 71:333–338

    Google Scholar 

  • Keating PL (1999) Changes in páramo vegetation along an elevation gradient in southern Ecuador. J Torrey Bot Soc 159–175

  • Kéry M, Royle JA (2016) Applied hierarchical modeling in ecology: analysis of distribution, abundance and species richness in r and bugs: volume 1: prelude and static models. Academic Press, Boston

    Google Scholar 

  • Letnic M, Ripple WJ (2017) Large-scale responses of herbivore prey to canid predators and primary productivity. Glob Ecol Biogeogr 26:860–866

    Google Scholar 

  • Lira-Torres I, Briones-Salas M, Sánchez-Rojas G (2014) Relative abundance, population structure, habitat preferences and activity patterns of Tapirus bairdii (Perissodactyla: Tapiridae). Chimalapas For Oaxaca Mexico 2014(62):13

    Google Scholar 

  • Lizcano D, Sissa A (2003) Notes on the distribution, and conservation status of mountain tapir (Tapirus pinchaque) in north Peru. Tapir Conserv 12:21–24

    Google Scholar 

  • Lizcano DJ, Amanzo J, Castellanos A, Tapia A, Lopez-Malaga CM (2016) Tapirus pinchaque . The IUCN Red List of Threatened Species 2016. https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T21473A45173922.en. Downloaded on 26 March 2020.

  • Lizcano DJ, Cavelier J (2000a) Daily and seasonal activity of the mountain tapir (Tapirus pinchaque) in the Central Andes of Colombia. J Zool 252:429–435

    Google Scholar 

  • Lizcano DJ, Cavelier J (2000b) Densidad poblacional y disponibilidad de habitat de la danta de montaña (Tapirus pinchaque) en los andes centrales de Colombia. Biotropica 31:165–173

    Google Scholar 

  • Lizcano DJ, Cavelier J (2004) Características químicas de salados y hábitos alimenticios de la danta de montaña (Tapirus pinchaque Roulin, 1829) en los Andes centrales de Colombia. Mastozool Neotropical 11:193–201

    Google Scholar 

  • López-Bao JV, Godinho R, Pacheco C, Lema FJ, García E, Llaneza L, Palacios V, Jiménez J (2018) Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Sci Rep 8:2177

    PubMed  PubMed Central  Google Scholar 

  • Lynam AJ, Tantipisanuh N, Chutipong W, Ngoprasert D, Baker MC, Cutter P, Gale G, Kitamura S, Steinmetz R, Sukmasuang R, Thunhikorn S (2012) Comparative sensitivity to environmental variation and human disturbance of Asian tapirs (Tapirus indicus) and other wild ungulates in Thailand. Integr Zool 7:389–399

    PubMed  Google Scholar 

  • MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. J Agric Biol Environ Stat 9:300–318

    Google Scholar 

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE (2018) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence, 2nd ed edn. Academic Press, Boston

    Google Scholar 

  • Mazerolle MJ (2019) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.2-2. https://cran.r-project.org/package=AICcmodavg

  • Mena JL, Yagui H (2019) Coexistence and habitat use of the South American coati and the mountain coati along an elevational gradient. Mamm Biol 98:119–127

    Google Scholar 

  • Meredith M, Ridout M (2014) overlap: Estimates of coefficient of overlapping for animal activity patterns. R package version 0.2.4

  • MINAM (2015) Plan Maestro del santuario nacional tabaconas namballe 2015–2019. Ministerio del Ambiente, San Ignacio, Cajamarca

    Google Scholar 

  • Naranjo-Piñera EJ, Cruz-Aldán E (1998) Ecología del tapir (Tapirus bairdii) en la reserva de la Biósfera La Sepultura, Chiapas, México. Acta Zool Mexicana (n.s.) 73:111–125.

  • Naranjo EJ (2019) Tapirs of the Neotropics. In: Gallina-Tessaro S (ed) Ecology and conservation of tropical ungulates in Latin America. Springer, Cham, pp 439–451

    Google Scholar 

  • Niedballa J, Sollmann R, Mohamed AB, Bender J, Wilting A (2015) Defining habitat covariates in camera-trap based occupancy studies. Sci Rep 5:17041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowak RM (1999) Walker's mammals of the world, 6th edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Oke OA, Thompson KA (2015) Distribution models for mountain plant species: the value of elevation. Ecol Model 301:72–77

    Google Scholar 

  • Ortega-Andrade HM, Prieto-Torres DA, Gómez-Lora I, Lizcano DJ (2015) Ecological and geographical analysis of the distribution of the mountain tapir (Tapirus pinchaque) in Ecuador: importance of protected areas in future scenarios of global warming. PLoS ONE 10:e0121137

    PubMed  PubMed Central  Google Scholar 

  • Padilla M, Dowler RC, Downer CC (2010) Tapirus pinchaque (Perissodactyla: Tapiridae). Mamm Spec 42:166–182

    Google Scholar 

  • Pettorelli N, Ryan S, Mueller T, Bunnefeld N, Jędrzejewska B, Lima M, Kausrud K (2011) The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Climate Res 46:15–27

    Google Scholar 

  • Peyre G, Balslev H, Font X (2018) Phytoregionalisation of the andean páramo. PeerJ 6:e4786

    PubMed  PubMed Central  Google Scholar 

  • Pinto FAS, Clevenger AP, Grilo C (2020) Effects of roads on terrestrial vertebrate species in Latin America. Environ Impact Assess Rev 81:106337

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. J Agric Biol Environ Stat 14:322–337

    Google Scholar 

  • Ripple WJ, Newsome TM, Wolf C, Dirzo R, Everatt KT, Galetti M, Hayward MW, Kerley GIH, Levi T, Lindsey PA, Macdonald DW, Malhi Y, Painter LE, Sandom CJ, Terborgh J, Van Valkenburgh B (2015) Collapse of the world’s largest herbivores. Sci Adv 1:e1400103

    PubMed  PubMed Central  Google Scholar 

  • Rovero F, Zimmermann F (2016) Camera trapping for wildlife research. Pelagic Publishing, Exeter

    Google Scholar 

  • Rowcliffe JM, Kays R, Kranstauber B, Carbone C, Jansen PA, Fisher D (2014) Quantifying levels of animal activity using camera trap data. Methods Ecol Evol 5:1170–1179

    Google Scholar 

  • Royle JA, Dorazio RM (2008) Hierarchical modeling and inference in ecology. The analysis of data from population, metapopulations and communities. Academic Press, London

    Google Scholar 

  • Schauenberg P (1969) Contribution à l'étude du Tapir pinchaque, Tapirus pinchaque Roulin 1829. Rev Suisse Zool 76:211–256

    Google Scholar 

  • Semper-Pascual A, Decarre J, Baumann M, Busso JM, Camino M, Gómez-Valencia B, Kuemmerle T (2019) Biodiversity loss in deforestation frontiers: linking occupancy modelling and physiological stress indicators to understand local extinctions. Biol Cons 236:281–288

    Google Scholar 

  • Silveira L, Jácomo ATA, Diniz-Filho JAF (2003) Camera trap, line transect census and track surveys: a comparative evaluation. Biol Cons 114:351–355

    Google Scholar 

  • Sklenář P (2006) Searching for altitudinal zonation: species distribution and vegetationcomposition in the superpáramo of volcán iliniza, ecuador. Plant Ecol 184:337–350

    Google Scholar 

  • Stabach JA, Rabeil T, Turmine V, Wacher T, Mueller T, Leimgruber P, Albrigh T (2017) On the brink of extinction—Habitat selection of addax and dorcas gazelle across the Tin Toumma desert. Niger Divers Distrib 23:581–591

    Google Scholar 

  • Stage AR, Salas C (2007) Interactions of elevation, aspect, and slope in models of forest species composition and productivity. For Sci 53:486–492

    Google Scholar 

  • Tirira D (2017) A Field Guide to the Mammals of Ecuador. Editorial Murciélago Blanco, Quito

    Google Scholar 

  • Tobler MW, Carrillo-Percastegui SE, Powell G (2009) Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. J Trop Ecol 25:261–270

    Google Scholar 

  • Tobler MW, Zúñiga A, Carrillo-Percastegui SE, Powell GVN (2015) Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. J Appl Ecol 52:413–421

    Google Scholar 

  • Trolle M, Kéry M (2005) Camera-trap study of ocelot and other secretive mammals in the northern Pantanal. Mammalia 69:409–416

    Google Scholar 

  • Villamuelas M, Fernández N, Albanell E, Gálvez-Cerón A, Bartolomé J, Mentaberre G, López-Olvera JR, Fernández-Aguilar X, Colom-Cadena A, López-Martín JM, Pérez-Barbería J, Garel M, Marco I, Serrano E (2016) The Enhanced Vegetation Index (EVI) as a proxy for diet quality and composition in a mountain ungulate. Ecol Ind 61:658–666

    Google Scholar 

  • Waltert M, Grammes J, Schwenninger J, Roig-Boixeda P, Port M (2020) A case of underestimation of density by direct line transect sampling in a hunted roe deer (Capreolus capreolus) population. Mamm Res 65:151–160

    Google Scholar 

  • Wearn OR, Glover-Kapfer P (2019) Snap happy: camera traps are an effective sampling tool when compared with alternative methods. R Soc Open Sci 6:181748

    PubMed  PubMed Central  Google Scholar 

  • Woodruff SP, Lukacs PM, Christianson D, Waits LP (2016) Estimating Sonoran pronghorn abundance and survival with fecal DNA and capture–recapture methods. Conserv Biol 30:1102–1111

    PubMed  Google Scholar 

  • Zapata-Ríos G, Branch LC (2016) Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol Cons 193:9–16

    Google Scholar 

  • Zuur AF, Hilbe JM, Ieno EN (2013) A beginner’s guide to GLM and GLMM with R: a frequentist and Bayesian perspective for ecologists. Highland Statistics, Newburgh

    Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14

    Google Scholar 

Download references

Acknowledgements

We want to thank the institutions that made this study possible and the administration offices of the Tabaconas Namballe National Sanctuary and the National Service of Natural Protected Areas (SERNANP). We especially thank Douglas Cotrina, and the park rangers Evelio Lozada, Segundo Neyra, Jesus Aponte, Leoncio Ocupa, Marco Tenorio, Alis Hoower Lozada, Alexander Campos, César Caruajulca, Alexander Ramírez, and Ronal Campos for their excellent field assistance. We also thank Carina Huaman for her invaluable help with logistics, Luis Hiyo, and the SBC team (Javier Vallejos, José Vallejos, Isaí Sánchez, and Álvaro García Olaechea). Finally, we recognize the assistance of Jorge Rivero and Johanna Bindels in camera trap data processing, Cristina Lopez for her comments to a previous version of this manuscript, and Aaron Skinner and Laura Cancino for an English revision of the first stages of the manuscript. Melinda Modrell revised the English of this last version of the manuscript. Funds from WWF-Germany supported this study. We are indebted to two anonymous reviewers for their helpful comments and constructive criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Mena.

Additional information

Handling editor: Luca Corlatti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mena, J.L., Yagui, H., La Rosa, F. et al. Topography and disturbance explain mountain tapir (Tapirus pinchaque) occupancy at its southernmost global range. Mamm Biol 100, 231–239 (2020). https://doi.org/10.1007/s42991-020-00027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42991-020-00027-9

Keywords

Navigation