Le point sur…
Imagerie en tenseur de diffusion et tractographie de l’encéphale et de la moelleDiffusion tensor imaging and tractography of the brain and spinal cord

https://doi.org/10.1016/S0221-0363(07)89850-7Get rights and content

Résumé

L’imagerie en tenseur de diffusion est une technique d’IRM qui permet la cartographie in vivo de la microstructure et de l’organisation des tissus. Elle offre la possibilité de détecter et de quantifier des anomalies de la substance blanche non visibles en imagerie conventionnelle dans des pathologies cérébrales variées, est fréquemment intégrée aux protocoles IRM d’exploration de l’encéphale, et plus récemment de la moelle. L’objectif de ce document est de rappeler les principes de l’imagerie de diffusion et de la tractographie de fibres, d’en préciser l’apport pour l’exploration du système nerveux central dans les pathologies suivantes : maladie d’Alzheimer, affections psychiatriques, ischémie cérébrale, pathologies inflammatoires, tumorales, et épilepsies pharmacorésistantes. Enfin, les applications émergentes pour l’étude de la pathologie médullaire sont également abordées.

Abstract

Diffusion tensor imaging is a magnetic resonance imaging technique that provides details on tissue microstructure and organization well beyond the usual image resolution. With diffusion tensor imaging, diffusion anisotropy can be quantified and subtle white matter changes not normally seen on conventional MRI can be detected. The aim of this article is to review the principles of diffusion tensor imaging and fiber tracking and their applications to the study of the brain, including Alzheimer disease, neuropsychiatric disorders, strokes, multiple sclerosis, brain tumors, and intractable seizures. Emerging applications to spinal cord disorders are also presented.

Références (33)

  • P. Mukherjee

    Diffusion tensor imaging and fiber tractography in acute stroke

    Neuroimaging Clin N Am

    (2005)
  • G. Thomalla et al.

    Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke

    Neuroimage

    (2004)
  • S.J. Price et al.

    Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion?

    Clin Radiol

    (2003)
  • B. Stieltjes et al.

    Diffusion tensor imaging in primary brain tumors: reproducible quantitative analysis of corpus callosum infiltration and contralateral involvement using a probabilistic mixture model

    Neuroimage

    (2006)
  • T.W. Stadnik et al.

    Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings

    AJNR Am J Neuroradiol

    (2001)
  • T.A. Huisman

    Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma

    Eur Radiol

    (2003)
  • Cited by (19)

    • Contribution of tractography to peripheral nerve imaging

      2023, Journal d'imagerie diagnostique et interventionnelle
    • Predicting Current Thresholds for Pyramidal Tract Activation Using Volume of Activated Tissue Modeling in Patients Undergoing Deep Brain Stimulation Surgery

      2018, World Neurosurgery
      Citation Excerpt :

      These ROIs must be correctly positioned if only the white substance tracts are to be visualized. For this purpose, it is necessary to position at least 2 ROIs according to known anatomic landmarks within the tract of interest.22 Finally, the use of the tractography requires that the DTI data be matched with reference imaging data, which can sometimes lead to errors in the estimated position of the fiber tract.

    • Pain and spinal cord imaging measures in children with demyelinating disease

      2015, NeuroImage: Clinical
      Citation Excerpt :

      Recent work has used functional imaging to demonstrate connectivity between rostral brain centers (Sprenger et al., 2015). A similar approach using functional white matter tractography (seeding rostral regions with known function as part of ascending pain pathways) may also be employed in patients with myelitis to map out brain regions associated with pain and other functions that are affected (Agosta et al., 2007; Oppenheim et al., 2007). Furthermore, in the future, by combining spinal cord with brain functional imaging, regions of the brain known to be affected in neuropathic pain in other conditions may be used to dissect the contribution of alterations in white matter tracts and the evolution of pain, a defined and necessary brain function (Garcia-Larrea and Peyron, 2013).

    View all citing articles on Scopus
    View full text