Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-27T18:35:33.726Z Has data issue: false hasContentIssue false

Landau–Kelly representation of statistical thermodynamics of a quantum plasma and electron emission from metals

Published online by Cambridge University Press:  04 June 2020

L. N. Tsintsadze
Affiliation:
Faculty of Exact and Natural Sciences, Andronikashvili Institute of Physics, Javakhishvili Tbilisi State University, Tbilisi, 0128, Georgia
G. M. Peradze*
Affiliation:
Faculty of Exact and Natural Sciences, Andronikashvili Institute of Physics, Javakhishvili Tbilisi State University, Tbilisi, 0128, Georgia
N. L. Tsintsadze
Affiliation:
Faculty of Exact and Natural Sciences, Andronikashvili Institute of Physics, Javakhishvili Tbilisi State University, Tbilisi, 0128, Georgia
*
Email address for correspondence: GrigolPeradze@tsu.ge

Abstract

We have investigated the influence of a strong magnetic field on various aspects of a quantum Fermi plasma. Due to the strong magnetic field, the distribution function becomes anisotropic. First, we consider non-degenerate quantum, Landau and Kelly distribution function. It was found that the adiabatic equation is similar to the adiabatic equation for a Maxwell distribution function, when we include the magnetic field in the energy expression. Using the Kelly distribution for a degenerate, quantum Fermi gas, parallel and perpendicular components of the pressure were derived. It was found that perpendicular component of pressure never becomes zero and three-dimensional system always stay three-dimensional. Lastly, we investigated electron emission from metals and have shown the influence of the magnetic field. We calculated thermionic emission, the so-called Richardson effect. In addition, we investigate the influence of external electromagnetic radiation on the electron current density (Hallwachs effect) from metals.

Keywords

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bisnovatyi-Kogan, G. S. 1971 The explosion of a rotating star as a supernova mechanism. Sov. Astron. 14, 652.Google Scholar
De Haas, W. J. & Van Alphen, P. M. 1930 The dependence of the susceptibility of diamagnetic metals upon the field. Proc. Netherlands R. Acad. Sci. 33, 170.Google Scholar
Eliasson, B. & Shukla, P. K. 2010 Dispersion properties of electrostatic oscillations in quantum plasmas. J. Plasma Phys. 76 (1), 717.CrossRefGoogle Scholar
Gradshteyn, I. S. & Ryzhik, I. M. 2010 Table of Integrals, Series, and Products. Academic Press.Google Scholar
Greiner, W., Neise, L. & Stöcker, H. 1995 Thermodynamics and Statistical Mechanics. Springer.Google Scholar
Haensel, P., Potekhin, A. Y. & Yakovlev, D. G. 2007 Neutron Stars 1: Equation of State and Structure, vol. 326. Springer.CrossRefGoogle Scholar
Kelly, D. C. 1964 Dielectric tensor for a quantum plasma. Phys. Rev. E 134 (3A), A641.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1948 Quantum Mechanics: Non-relativistic Theory, vol. 3. TTL.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1980 Statistical Physics, Part 1: Volume 5 (Course of Theoretical Physics, Volume 5), vol. 3. Butterworth-Heinemann.Google Scholar
Landstreet, J. D. 1967 Synchrotron radiation of neutrinos and its astrophysical significance. Phys. Rev. E 153 (5), 1372.CrossRefGoogle Scholar
Lifshitz, I. M. & Peschanskii, V. G. 1959 Galvanomagnetic characteristics of metals with open fermi surfaces. Sov. Phys. JETP 8 (5), 875883.Google Scholar
Lindsay, S. 2010 Introduction to Nanoscience. Oxford University Press.Google Scholar
Lipunov, V. M. 1987 Neutron Star Astrophysics. Nauka.Google Scholar
Rasheed, A., Murtaza, G. & Tsintsadze, N. L. 2010 Nonlinear structure of ion-acoustic waves in completely degenerate electron-positron and ion plasma. Phys. Rev. E 82 (1), 016403.Google ScholarPubMed
Shah, H. A., Masood, W., Qureshi, M. N. S. & Tsintsadze, N. L. 2011 Effects of trapping and finite temperature in a relativistic degenerate plasma. Phys. Plasmas 18 (10), 102306.CrossRefGoogle Scholar
Shapiro, S. L. & Teukolsky, S. A. 1983 Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. Wiley.CrossRefGoogle Scholar
Shubnikov, L. V. & de Haas, W. J. 1930 Leiden communication. Proc. Netherlands R. Acad. Sci. 33, 130163.Google Scholar
Shukla, P. K. & Eliasson, B. 2010 Nonlinear aspects of quantum plasma physics. Phys. Uspekhi 53 (1), 51.CrossRefGoogle Scholar
Tsintsadze, L. N. 2010 Quantization and excitation of longitudinal electrostatic waves in magnetized quantum plasmas. In AIP Conference Proceedings, vol. 1306, pp. 89102. AIP.Google Scholar
Tsintsadze, L. N. & Tsintsadze, N. L. 2010 Excitation of longitudinal waves in a degenerate isotropic quantum plasma. J. Plasma Phys. 76 (3–4), 403408.CrossRefGoogle Scholar
Tsintsadze, N. L., Shah, H. A., Qureshi, M. N. S. & Tagviashvili, M. N. 2015 Properties of solitary ion acoustic waves in a quantized degenerate magnetoplasma with trapped electrons. Phys. Plasmas 22 (2), 022303.CrossRefGoogle Scholar
Tsintsadze, N. L. & Tsintsadze, L. N. 2009a Novel quantum kinetic equations of the fermi particles. Eur. Phys. Lett. 88 (3), 35001.Google Scholar
Tsintsadze, N. L. & Tsintsadze, L. N. 2009b New kinetic equations and bogolyubov energy spectrum in a fermi quantum plasma. In AIP Conference Proceedings, vol. 1177, pp. 1825. AIP.CrossRefGoogle Scholar
Tsintsadze, N. L. & Tsintsadze, L. N. 2014 Cooling of a fermi quantum plasma. Eur. Phys. J. D 68 (5), 117.Google Scholar
Tsintsadze, N. L., Tsintsadze, L. N., Hussain, A. & Murtaza, G. 2011 New longitudinal waves in electron-positron-ion quantum plasmas. Eur. Phys. J. D 64 (2–3), 447452.CrossRefGoogle Scholar
Zilberman, P. E. 1970 Nonlinear theory of the interaction of high-frequency ultrasound with carriers in solids. Sov. Phys. Solid State 12 (4), 796803.Google Scholar