Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T12:32:08.375Z Has data issue: false hasContentIssue false

Putative markers of infective life stages in Leishmania (Viannia) braziliensis

Published online by Cambridge University Press:  26 September 2007

D. GAMBOA
Affiliation:
Instituto de Medicina Tropical ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, A.P. 4314, Lima 100, Peru
G. VAN EYS
Affiliation:
Department of Molecular Genetics, University of Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
K. VICTOIR
Affiliation:
Unit of Molecular Parasitology, Intituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium
K. TORRES
Affiliation:
Instituto de Medicina Tropical ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, A.P. 4314, Lima 100, Peru
V. ADAUI
Affiliation:
Instituto de Medicina Tropical ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, A.P. 4314, Lima 100, Peru
J. AREVALO
Affiliation:
Instituto de Medicina Tropical ‘Alexander von Humboldt’, Universidad Peruana Cayetano Heredia, A.P. 4314, Lima 100, Peru Departamento de Bioquimica, Biologia Molecular y Farmacologia, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, A.P. 4314, Lima 100, Peru
J.-C. DUJARDIN*
Affiliation:
Unit of Molecular Parasitology, Intituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium
*
*Corresponding author: Unit of Molecular Parasitology, Intituut voor Tropische Geneeskunde, 155 Nationalestraat, B-2000 Antwerpen, Belgium. Tel: 32 3 2476355. Fax: 32 3 2476359. E-mail: jcdujard@itg.be

Summary

Gene expression is known to vary significantly during the Leishmania life-cycle. Its monitoring might allow identification of molecular changes associated with the infective stages (metacyclics and amastigotes) and contribute to the understanding of the complex host-parasite relationships. So far, very few studies have been done on Leishmania (Viannia) braziliensis, one of the most pathogenic species. Such studies require, first of all, reference molecular markers. In the present work, we applied differential display analysis (DD analysis) in order to identify transcripts that might be (i) candidate markers of metacyclics and intracellular amastigotes of L. (V.) braziliensis or (ii) potential controls, i.e. constitutively expressed. In total, 48 DNA fragments gave reliable sequencing data, 29 of them being potential markers of infective stages and 12 potential controls. Eight sequences could be identified with reported genes. Validation of the results of DD analysis was done for 4 genes (2 differentially expressed and 2 controls) by quantitative real-time PCR. The infective insect stage-specific protein (meta 1) was more expressed in metacyclic-enriched preparations. The oligopeptidase b showed a higher expression in amastigotes. Two genes, glucose-6-phosphate dehydrogenase and a serine/threonine protein kinase, were found to be similarly expressed in the different biological samples.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almeida, M., Cuba, C., de Sa, C., Pharoah, M., Howard, K. and Miles, M. (1993). Metacyclogenesis of Leishmania (Viannia) braziliensis in vitro: evidence that lentil lectin is a marker of complement resistance and enhanced infectivity. Transactions of the Royal Society of Tropical Medicine and Hygiene 87, 325329.CrossRefGoogle ScholarPubMed
Almeida, R., Gilmartin, B. J., McCann, S. H., Norrish, A., Ivens, A. C., Lawson, D., Levick, M. P., Smith, D. F., Dyall, S. D., Vetrie, D., Freeman, T. C., Coulson, R. M., Sampaio, I., Schneider, H. and Blackwell, J. M. (2004). Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Molecular and Biochemical Parasitology 136, 87100.CrossRefGoogle Scholar
Bañuls, A. L. (1998). Apport de la génétique évolutive á la taxonomie et á l'épidémiologie du genre Leishmania. Ph.D. dissertation, University of Montpellier, France.Google Scholar
Bates, P. and Tetley, L. (1993). Leishmania mexicana: induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Experimental Parasitology 76, 412423.CrossRefGoogle ScholarPubMed
Ben Achour, Y., Chenik, M., Louzir, H. and Dellagi, K. (2002). Identification of a disulfide isomerase protein of Leishmania major as a putative virulence factor. Infection and Immunity 70, 35763585.CrossRefGoogle ScholarPubMed
Burleigh, B. A., Caler, E. V., Webster, P. and Andrews, N. W. (1997). A cytosolic serine endopeptidase from Trypanosoma cruzi is required for the generation of Ca2+ signaling in mammalian cells. Journal of Cell Biology 136, 609620.CrossRefGoogle ScholarPubMed
Caler, E. V., Vaena, S., Haynes, P. A., Andrews, N. W. and Burleigh, B. A. (1998). Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. EMBO Journal 17, 49754986.CrossRefGoogle ScholarPubMed
Chang, K.-P. (2003). Leishmania model for microbial virulence: the relevance of parasite multiplication and pathogenicity. Acta Tropica 85, 375390.CrossRefGoogle Scholar
Coulson, R. M. R. and Smith, D. F. (1990). Isolation of genes showing increased or unique expression in the infective promastigotes of Leishmania major. Molecular and Biochemical Parasitology 40, 6376.CrossRefGoogle ScholarPubMed
Coulson, R. M., Connor, V., Chen, J. C. and Ajioka, J. W. (1996). Differential expression of Leishmania major beta-tubulin genes during the acquisition of promastigote infectivity. Molecular and Biochemical Parasitology 82, 227236.CrossRefGoogle ScholarPubMed
de Almeida, M. C., Vilhena, V., Barral, A. and Barral-Netto, M. (2003). Leishmanial infection: analysis of its first steps. A review. Memorias do Instituto Oswaldo Cruz 98, 861870.CrossRefGoogle ScholarPubMed
Decuypere, S., Rijal, S., Yardley, V., De Doncker, S., Laurent, T., Khanal, B., Chappuis, F. and Dujardin, J. C. (2005 a). Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrobial Agents and Chemotherapy 49, 46164621.CrossRefGoogle ScholarPubMed
Decuypere, S., Vandesompele, J., Yardley, V., De Doncker, S., Laurent, T., Rijal, S., Llanos-Cuentas, A., Chappuis, F., Arevalo, J. and Dujardin, J. C. (2005 b). Differential polyadenylation of ribosomal RNA during post-transcriptional processing in Leishmania. Parasitology 131, 321329.CrossRefGoogle ScholarPubMed
Desjeux, P. (2001). The increase risk factors for Leishmaniasis worldwide. Transactions of the Royal Society of Tropical Medicine and Hygiene 95, 239243.CrossRefGoogle ScholarPubMed
Diatchenko, L., Lau, Y. F., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E. D. and Siebert, P. D. (1996). Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences, USA 93, 60256030.CrossRefGoogle ScholarPubMed
Hart, D. T., Vickerman, K. and Coombs, G. H. (1981). A quick, simple method for purifying Leishmania mexicana amastigotes in large number. Parasitology 82, 345355.CrossRefGoogle Scholar
Holzer, T. R., McMaster, W. R. and Forney, J. D. (2006). Expression profiling by whole-genome interspecies microarray hybridization reveals differential gene expression in procyclic promastigotes, lesion-derived amastigotes, and axenic amastigotes in Leishmania mexicana. Molecular and Biochemical Parasitology 146, 198218.CrossRefGoogle ScholarPubMed
Leifso, K., Cohen-Freue, G., Dogra, N., Murria, A. and McMaster, W. R. (2007). Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Molecular and Biochemical Parasitology 152, 3546.CrossRefGoogle ScholarPubMed
Liang, P. and Pardee, A. (1992). Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967971.CrossRefGoogle ScholarPubMed
Liew, F. and O'Donnell, C. (1993). Immunology of leishmaniasis. Advances in Parasitology 12, 161171.CrossRefGoogle Scholar
Llanos-Cuentas, A. (1993). Risk factors associated with the transmission of Andean cutaneous leishmaniasis. Ph.D. thesis, University of London, London, UK.Google Scholar
McNicoll, F., Drummelsmith, J., Müller, M., Madore, E., Boilard, N., Ouellette, M. and Papadopoulou, B. (2006). A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics 6, 35673581.CrossRefGoogle Scholar
Morty, R. E., Lonsdale-Eccles, J. D., Morehead, J., Caler, E. V., Mentele, R., Auerswald, E. A., Coetzer, T. H. T., Andrews, N. W. and Burleigh, B. A. (1999). Oligopeptidase B from Trypanosoma brucei, a new member of an emerging subgroup of serine oligopeptidases. Journal of Biological Chemistry 272, 2614926156.CrossRefGoogle Scholar
Motulsky, H. (1995). Intuitive Biostatistics. Oxford University Press, New York.Google Scholar
Naula, C., Parsons, M. and Mottram, J. C. (2005). Protein kinases as drug targets in trypanosomes and Leishmania. Biochimica et Biophysica Acta 30, 151159.CrossRefGoogle Scholar
Nourbakhsh, F., Uliana, S. R. B. and Smith, D. F. (1996). Characterisation and expression of a stage-regulated gene of Leishmania major. Molecular and Biochemical Parasitology 76, 201213.CrossRefGoogle ScholarPubMed
Ouakad, M., Chenik, M., Achour, Y. M., Louzir, H. and Dellagi, K. (2007). Gene expression analysis of wild Leishmania major isolates: identification of genes preferentially expressed in amastigotes. Parasitology Research 100, 255264.CrossRefGoogle ScholarPubMed
Rotureau, B., Ravel, C., Couppie, P., Pratlong, F., Nacher, M., Dedet, J. P. and Carme, B. (2006). Use of PCR-restriction fragment length polymorphism analysis to identify the main New World Leishmania species and analyze their taxonomic properties and polymorphism by application of the assay to clinical samples. Journal of Clinical Microbiology 44, 459467.CrossRefGoogle ScholarPubMed
Saxena, A., Worthey, E. A., Yan, S., Leland, A., Stuart, K. D. and Myler, P. J. (2003). Evaluation of differential gene expression in Leishmania major Friedlin procyclics and metacyclics using DNA microarrays analysis. Molecular and Biochemical Parasitology 129, 103114.CrossRefGoogle Scholar
Saxena, A., Lahav, T., Holland, N., Aggarwal, G., Anupama, A., Huang, Y., Volpin, H., Myler, P. J. and Zilberstein, D. (2007). Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Molecular and Biochemical Parasitology 152, 5365.CrossRefGoogle ScholarPubMed
Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467470.CrossRefGoogle ScholarPubMed
Stiles, J. K., Hicock, P.I, Shah, P. H. and Meade, J. C. (1999). Genomic organization, transcription, splicing and gene regulation in Leishmania. Annals of Tropical Medicine and Parasitology 93, 781807.CrossRefGoogle ScholarPubMed
Troeber, L., Pike, R., Morty, R. E., Berry, R. K., Coetzer, T. H. T. and Lonsdale-Eccles, J. D. (1996). Proteases from Trypanosoma brucei brucei. Purification, characterisation and interactions with host regulatory molecules. European Journal of Biochemistry 238, 728736.CrossRefGoogle Scholar
Uliana, S. R. B., Goyal, N., Freymüller, E. and Smith, D. F. (1999). Leishmania: overexpression and comparative structural analysis of the stage-regulated Meta 1 gene. Experimental Parasitology 92, 183191.CrossRefGoogle ScholarPubMed
Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Spelemen, F. (2002). Accurate normalization of real-time quantity PCR data by geometric average of multiple internal control genes. Genome boil 3:RESEARCH0034.Google Scholar
Van Meirvenne, N., Janssens, P. G. and Magnus, E. (1975). Antigenic variation in syringe-passaged populations of Trypanosoma (Trypanosoon) brucei. I. Rationalization of the experimental approach. Annales de la Société belge de Médecine tropicale 55, 12.Google ScholarPubMed
Walker, J., Vasquez, J. J., Gomez, M. A., Drummelsmith, J., Burchmore, R., Girard, I. and Ouellette, M. (2006). Identification of developmentally-regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Molecular and Biochemical Parasitology 147, 6473.CrossRefGoogle ScholarPubMed
Wang, Y., Dimitrov, K., Garrity, L. K., Sazer, S. and Beverly, S. M. (1998). Stage-specific activity of the Leishmania major CRK3 kinase and functional rescue of a Schizosaccaromyces pombe cdc2 mutant. Molecular and Biochemical Parasitology 96, 139150.CrossRefGoogle Scholar
Wiese, M., Kuhn, D. and Grunfelder, C. G. (2003). Protein kinase involved in flagellar-length control. Eukaryotic Cell 2, 769777.CrossRefGoogle ScholarPubMed
Zakai, H. A., Chance, M. L. and Bates, P. (1998). In vitro stimulation of metacyclogenesis in Leishmania braziliensis, L. donovani, L. major and L. mexicana. Parasitology 116, 305309.CrossRefGoogle ScholarPubMed