Skip to main content
Log in

Effect of Two Wheat Cultivars Differing in Hydroxamic Acid Concentration on Detoxification Metabolism in the AphidSitobion avenae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Hydroxamic acids (Hx) are wheat secondary metabolites conferring resistance for cereals against aphids. The activity of five enzymatic systems were evaluated in the aphid Sitobion avenae reared on the high-Hx wheat cultivar Chagual and the low-Hx wheat cultivar Huayún for 10 generations. Enzyme solutions were prepared from aphid homogenates and assayed for mixed function oxidases (including cytochrome P-450 monooxygenases and NADPH cytochrome c reductase), glutathione S-transferases, esterases, and catalase. Specific activities per aphid individual of cytochrome P-450 monooxygenases, NADPH cytochrome c reductase, glutathione S-transferases, and esterases were significantly increased in wheat cultivars relative to oat (only marginal increase of esterases in Chagual). Aphids fed on cv. Huayún showed an overall higher induction of enzymatic systems than those fed on cv. Chagual. Comparison of these results with reported effects of Hx on detoxifying enzymes in other insects, including aphids, support the hypothesis that these enzymatic pathways play an important role in the detoxification of toxic host-plant secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Ahmad, S., Brattsen, L. B., Mullin, C. A., and Yu, S. J. 1986. Enzymes involved in the metabolism of plant allelochemicals, pp. 73–152, in L. B. Brattsen and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Amar-Costesec, A., Beaufay, H., Wibo, M., ThinÈs-Sempoux, D., Feytmans, E., Robbi, M., and Berthet, J. 1974. Analytical study of microsomes and isolated subcellular membranes from rat liver. II Preparation and composition of the microsomal fraction. J. Cell Biol. 61:201–212.

    Google Scholar 

  • ArgandoÑa, V. H., PeÑa, G. F., Niemeyer, H. M., and Corcuera, L. J. 1982. Effect of cysteine on stability and toxicity to aphids of a cyclic hydroxamic acid from Gramineae. Phytochemistry 21:1573–1574.

    Google Scholar 

  • Bohidar, K., Wratten, S. D., and Niemeyer, H. M. 1986. Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Ann. Appl. Biol. 109:193–198.

    Google Scholar 

  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  • Brattsen, L. B., Wilkinson, C. F. and Eisner, T. 1977. Herbivore-plant interactions: Mixed-function oxidases and secondary plant substances. Science 196:1349–1352.

    Google Scholar 

  • Cuevas, L., and Niemeyer, H. M. 1993. Effect of hydroxamine acids from cereals on aphid cholinesterases. Phytochemistry 34:983–985.

    Google Scholar 

  • Dixon, A. F. G. 1998. Aphid Ecology, 2nd ed. Chapman & Hall, 300 pp.

  • Field, L. M., and Devonshire, A. L. 1992. Esterase genes conferring insecticide resistance in aphids, pp. 209–217, in C. A. Mullin, and J. G. Scott (eds.). Molecular Mechanisms of Insecticide Resistance Diversity Among Insects. ACS Symposium Series. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Field, L. M., Devonshire, A. L., and Forde, B. G. 1988. Molecular evidence that insecticide resistance in the peach-potato aphid (Myzus persicae Sulz.) results from amplification of an esterase gene. Biochem. J. 251:309–312.

    Google Scholar 

  • Figueroa, C. C., Koenig, C., Araya, C., Santos, M. J., and Niemeyer, H. M. 1999. Effect of DIMBOA, a hydroxamic acid from cereals, on peroxisomal and mitochondrial enzymes from aphids: Evidence for the presence of peroxisomes in aphids. J. Chem. Ecol. 25:2465–2475.

    Google Scholar 

  • Givovich, A., and Niemeyer, H. M. 1995. Comparison of the effect of hydroxamic acids from wheat on five species of cereal aphids. Entomol. Exp. Appl. 74:115–119.

    Google Scholar 

  • Hashimoto, Y., and Shudo, K. 1996. Chemistry of biologically active benzoxazinoids. Phytochemistry 43:551–559.

    Google Scholar 

  • Hofman, J., and Hofmanova, O. 1969. 1,4-Benzoxazine derivatives in plants. Sephadex fractionation and identification of a new glucoside. Eur. J. Biochem. 8:109–112.

    Google Scholar 

  • Kanga, L. H. B., Pree, D. J., Van Lier, J. L., and Whitty, K. J. 1997. Mechanisms of resistance to organophosphorous and carbamate insecticides in Oriental fruit moth populations (Gapholita molesta Busck). Pestic. Biochem. Physiol. 59:11–23.

    Google Scholar 

  • Leszczynski, B., and Dixon, A. F. G. 1990. Resistance of cereals to aphids: Interaction between hydroxamic acids and the aphid Sitobion avenae (Homoptera: Aphididae). Ann. Appl. Biol. 117:21–30.

    Google Scholar 

  • Leszczynski, B., and Dixon, A. F. G. 1992. Resistance of cereals to aphids: The interaction between hydroxamic acids and glutathione S-transferases in the grain aphid Sitobion avenae (F.) (Hom., Aphididae). J. Appl. Entomol. 113:61–67.

    Google Scholar 

  • Leszczynski, B., Matok, M., and Dixon, A. F. G. 1994. Detoxification of cereal plant allelochemicals by aphids: Activity and molecular weights of glutathione S-transferase in three species of cereal aphids. J. Chem. Ecol. 20:387–394.

    Google Scholar 

  • Lindroth, R. L. 1989. Chemical ecology of the luna moth. Effects of host plant on detoxification enzyme activity. J. Chem. Ecol. 15:2019–2029.

    Google Scholar 

  • Mannaerts, G. P., and Van Veldhoven, P. P. 1993. Metabolic pathways in mammalian peroxisomes. Biochimie 75:147–158.

    Google Scholar 

  • Minks, A. K., and Harrewijn, P. 1987. Aphids. Their Biology, Natural Enemies and Control. Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  • Niemeyer, H. M. 1988. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry 27:3349–3358.

    Google Scholar 

  • Niemeyer, H. M., and PÉrez, F. J. 1995. Potential of hydroxamic acids in the control of cereal pests, diseases and weeds, pp. 260–270, in Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds.). Allelopathy: Organisms, Processes, and Applications, ACS Symposium Series. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Niemeyer, H. M., Pesel, E., Franke, S., and Francke, W. 1989. Ingestion of the benzoxazinone DIMBOA from wheat plants by aphids. Phytochemistry 28:2307–2310.

    Google Scholar 

  • Nitao, J. K. 1989. Enzymatic adaptation in a specialist herbivore for feeding on furanocoumarincontaining plants. Ecology 70:629–635.

    Google Scholar 

  • Ortego, F., Ruiz, M., and CastaÑera, P. 1998. Effect of DIMBOA on growth and digestive physiology of Sesamia nonagrioides (Lepidoptera: Noctuidae) larvae. J. Insect Physiol. 44:95–101.

    Google Scholar 

  • PÉrez, F. J., and Niemeyer, H. M. 1985. The reduction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one by thiols. Phytochemistry 24:2963–2966.

    Google Scholar 

  • PÉrez, F. J., and Niemeyer, H. M. 1989. Reaction of DIMBOA with amines. Phytochemistry 28:1831–1834.

    Google Scholar 

  • Rosenthal, G. A., and Berenbaum, M. R. 1991. Herbivores. Their Interaction with Secondary Plant Metabolites, Vols. I and II, 2nd ed. Academic Press, New York, 468 and 493 pp.

    Google Scholar 

  • Santos, M. J., Imanaka, T., Shio, and Lazarow, P. B. 1988. Peroxisomal integral membrane proteins in control and Zellweger fibroblasts. J. Biol. Chem. 263:10502–10509.

    Google Scholar 

  • Thackray, D. J., Wratten, S. D., Edwards, P. J., and Niemeyer, H. M. 1990. Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Gramineae in relation to hydroxamic acid levels. Ann. Appl. Biol. 116:573–582.

    Google Scholar 

  • Wadleigh, R. W. and Yu, S. J. 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol. 14:1279–1288.

    Google Scholar 

  • Yan, F., Xu, C., Li, S., Lin, C., and Li, J. 1995. Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenèe). J. Chem. Ecol. 21:2047–2056.

    Google Scholar 

  • Yu, S. J. 1982. Host plant induction of glutathione S-transferase in the fall armyworm. Pestic. Biochem. Physiol. 18:101–106.

    Google Scholar 

  • Yu, S. J. 1986. Consequences of induction of foreign compound-metabolizing enzymes in insects, pp. 153–174, in L. B. Brattsen and S. Ahmad (eds.). Molecular Aspects of Insect-Plant Associations. Plenum Press, New York.

    Google Scholar 

  • Yu, S. J. 1987. Microsomal oxidation of allelochemicals in generalist (Spodoptera frugiperda) and semispecialist (Anticarsia gemmatalis) insects. J. Chem. Ecol. 13:423–436.

    Google Scholar 

  • Yu, S. J. 1992. Plant-allelochemical-adapted glutathione transferases in Lepidoptera, pp. 174–190, in C. A. Mullin, and J. G. Scott (eds.). Molecular Mechanisms of Insecticide Resistance. Diversity Among Insects. ACS Symposium Series. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Yu, S. J. 1996. Insect glutathione S-transferases. Zool. Stud. 35:9–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loayza-Muro, R., Figueroa, C.C. & Niemeyer, H.M. Effect of Two Wheat Cultivars Differing in Hydroxamic Acid Concentration on Detoxification Metabolism in the AphidSitobion avenae. J Chem Ecol 26, 2725–2736 (2000). https://doi.org/10.1023/A:1026481524896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026481524896

Navigation