Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease

Abstract

Bacterial chemotaxis provides a simple model system for the more complex sensory responses of multicellular eukaryotic organisms1. In Escherichia coli, methylation and demethylation of four related membrane proteins, the methyl-accepting chemotaxis proteins (or MCPs), is central to chemotactic sensing and signal transduction2. Three of these proteins, Tar, Tsr and Trg, have been assigned specific roles in chemotaxis. However, the role of the fourth MCP, Tap, has remained obscure3. We demonstrate here that Tap functions as a conventional signal transducer, enabling the cell to respond chemotactically to dipeptides. This provides the first evidence of specific bacterial chemotaxis towards peptides. Peptide taxis requires the function of a periplasmic component of the dipeptide permease. This protein represents the first example of a periplasmic chemoreceptor that does not have a sugar substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koshland, D. E. Jr Bacterial Chemotaxis as a Model Behavioral System (Raven, New York, 1980).

    Google Scholar 

  2. Hazelbauer, G. L. & Harayama, S. Int. Rev. Cytol. 81, 33–70 (1983).

    Article  CAS  Google Scholar 

  3. Slocum, M. K. & Parkinson, J. S. J. Bact. 163, 586–594 (1985).

    CAS  PubMed  Google Scholar 

  4. Wang, E. A. & Koshland, D. E. Jr Proc. natn. Acad. Sci. U.S.A. 77, 7157–7161 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Hazelbauer, G. L. & Adler, J. Nature 230, 101–104 (1971).

    CAS  Google Scholar 

  6. Zukin, R. S., Hartig, P. R. & Koshland, D. E. Jr Biochemistry 18, 5599–5605 (1979).

    Article  CAS  Google Scholar 

  7. Mesibov, R. & Adler, J. J. Bact. 112, 315–326 (1972).

    CAS  PubMed  Google Scholar 

  8. Tso, W-W. & Adler, J. J. Bact. 118, 560–576 (1974).

    CAS  PubMed  Google Scholar 

  9. Springer, M. S., Goy, M. F. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 74, 3312–3316 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Kondoh, H., Ball, C. B. & Adler, J. Proc. natn. Acad. Sci. U.S.A. 76, 260–264 (1977).

    Article  ADS  Google Scholar 

  11. Slocum, M. K. & Parkinson, J. S. J. Bact. 155, 565–577 (1983).

    CAS  PubMed  Google Scholar 

  12. Krikos, A., Mutoh, N., Boyd, A. & Simon, M. I. Cell 33, 615–622 (1983).

    Article  CAS  Google Scholar 

  13. Boyd, A., Krikos, A. & Simon, M. I. Cell 26, 333–343 (1981).

    Article  CAS  Google Scholar 

  14. Higgins, C. F. & Hardie, M. M. J. Bact. 155, 1434–1438 (1983).

    CAS  PubMed  Google Scholar 

  15. Guter, C. A., Morgan, D. G., Osheroff, N. & Staros, J. V. J. biol. Chem. 260, 10812–10816 (1985).

    Google Scholar 

  16. Higgins, C. F. & Gibson, M. M. Meth. Enzym. 125, 365–377 (1986).

    Article  CAS  Google Scholar 

  17. Higgins, C. F. Microbiology, 17–20 (ASM, Washington, DC, 1984).

  18. Payne, J. W. (ed.) Microorganisms and Nitrogen Sources, 211–256 (Wiley, Chichester, UK, 1980).

  19. Higgins, C. F., Hardie, M. M., Jamieson, D. J. & Powell, L. M. J. Bact. 153, 830–836 (1983).

    CAS  PubMed  Google Scholar 

  20. Hogarth, B. G. & Higgins, C. F. J. Bact. 153, 1548–1551 (1983).

    CAS  PubMed  Google Scholar 

  21. Hiles, I. D. & Higgins, C. F. (in preparation).

  22. Gibson, M. M., Price, M. & Higgins, C. F. J. Bact. 160, 122–130 (1984).

    CAS  PubMed  Google Scholar 

  23. Jamieson, D. J. & Higgins, C. F. J. Bact. 160, 131–136 (1984).

    CAS  PubMed  Google Scholar 

  24. Parkinson, J. S. & Houts, S. E. J. Bact. 151, 106–113 (1982).

    CAS  PubMed  Google Scholar 

  25. Adler, J. J. gen. Microbiol. 74, 77–91 (1973).

    Article  CAS  Google Scholar 

  26. Callahan, A. M. & Parkinson, J. S. J. Bact. 161, 96–104 (1985).

    CAS  PubMed  Google Scholar 

  27. Dahl, M. K. & Manson, M. D. J. Bact. 164, 1057–1063 (1985).

    CAS  PubMed  Google Scholar 

  28. Berg, H. C. & Block, S. M. J. gen. Microbiol. 130, 2915–2920 (1984).

    CAS  PubMed  Google Scholar 

  29. Manson, M. D., Boos, W., Bassford, P. J. & Rasmussen, B. A. J. boil. Chem. 260, 9727–9733 (1985).

    CAS  Google Scholar 

  30. Koman, A., Harayama, S. & Hazelbauer, G. L. J. Bact. 138, 739–747 (1979).

    CAS  PubMed  Google Scholar 

  31. Manson, M. D. & Kossman, M. J. Bact. 165, 34–40 (1986).

    Article  CAS  Google Scholar 

  32. Ames, G. F.-L. & Higgins, C. F. Trends. biochem. Sci. 8, 97–100 (1983).

    Article  CAS  Google Scholar 

  33. Ames, G. F.-L. A. Rev. Biochem. (in the press).

  34. Perry, D. & Gilvarg, C. J. Bact. 160, 943–948 (1984).

    CAS  PubMed  Google Scholar 

  35. Cowell, J. L. J. Bact. 120, 139–146 (1974).

    CAS  PubMed  Google Scholar 

  36. Russo, A. F. & Koshland, D. E. Jr J. Bact. 165, 276–282 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manson, M., Blank, V., Brade, G. et al. Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Nature 321, 253–256 (1986). https://doi.org/10.1038/321253a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321253a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing