Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes

Abstract

INXenopus oocytes, as well as other cells, inositol-l,4,5-tris-phosphate (Ins(l,4,5)P3)-induced Ca2+ release1-4 is an excitable process that generates propagating Ca2+ waves5-7 that annihilate upon collision8-12. The fundamental property responsible for excitability13 appears to be the Ca2+ dependency of the Ins(l,4,5)P3 receptor9. Here we report that Ins(l,4,5)P3-induced Ca2+ wave activity is strengthened by oxidizable substrates that energize mitochondria, increasing Ca2+ wave amplitude, velocity and interwave period. The effects of pyruvate/malate are blocked by ruthenium red at the Ca2+ uniporter, by rotenone at complex I, and by antimycin A at complex III, and are subsequently rescued at complex IV by ascorbate tetramethylphenylenediamine (TMPD)14. Our data reveal that potential-driven mitochondrial Ca2+ uptake is a major factor in the regulation of Ins(l,4,5)P3-induced Ca2+ release and clearly demonstrate a physiological role of mitochondria in intracellular Ca2+ signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berridge, M. J. Nature 361, 315–325 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Putney, J. W. J. & Bird, J. Endocr. Rev. 14, 610–631 (1993).

    Article  CAS  Google Scholar 

  3. Pozzan, T., Rizzuto, R., Volpe, P. & Meldolesi, J. Physiol. Rev. 74, 595–636 (1994).

    Article  CAS  Google Scholar 

  4. Clapham, D. E. Cell 80, 259–268 (1995).

    Article  CAS  Google Scholar 

  5. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Science 247, 470–473 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Boitano, S., Dirksen, E. R. & Sanderson, M. J. Science 258, 292–295 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Rooney, T. A., Sass, E. J. & Thomas, A. P. J. biol. Chem. 265, 10792–10796 (1990).

    CAS  PubMed  Google Scholar 

  8. Lechleiter, J., Girard, S., Peralta, E. & Clapham, D. Science 252, 123–126 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Lechleiter, J. D. & Clapham, D. E. Cell 69, 283–294 (1992).

    Article  CAS  Google Scholar 

  10. Parker, I. & Yao, Y. Proc. R. Soc. Lond. B 246, 269–274 (1991).

    Article  ADS  CAS  Google Scholar 

  11. DeLisle, S. & Welsch, M. J. J. biol. Chem. 267, 7963–7966 (1992).

    CAS  PubMed  Google Scholar 

  12. Camacho, P. & Lechleiter, J. Science 260, 226–229 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Winfree, A. T. in Geometry of Biological Time (ed. Winfree, A. T.) 246 (Springer, New York, 1980).

    Book  Google Scholar 

  14. Nicholls, D. G. & Fergusson, S. Bioenergetics Vol. 2 (Academic, New York, 1992).

    Google Scholar 

  15. Gunter, T. E. & Pfeiffer, D. R. Am. J. Physiol. 258, C755–C786 (1990).

    Article  CAS  Google Scholar 

  16. Chacon, E. et al. Biophys. J. 66, 942–952 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Bezprozvanny, I. & Ehrlich, B. E. Neuron 10, 1175–1184 (1993).

    Article  CAS  Google Scholar 

  18. Goldstone, T. P., Roos, I. & Crompton, M. Biochemistry 26, 246–254 (1987).

    Article  CAS  Google Scholar 

  19. Carafoli, E. A. Rev. Biochem. 56, 395–433 (1987).

    Article  CAS  Google Scholar 

  20. Parys, J. B. et al. J. biol. Chem. 267, 18776–18782 (1992).

    CAS  PubMed  Google Scholar 

  21. Petersen, O. H., Petersen, C. C. H. & Kasai, H. A. Rev. Physiol. 56, 297–319 (1994).

    Article  CAS  Google Scholar 

  22. Maeda, N., Niinobe, M., Inoue, Y. & Mikoshiba, K. Devl. Biol. 133, 67–76 (1989).

    Article  CAS  Google Scholar 

  23. Mignery, G. A., Sudhof, T. C., Takei, K. & DeCamilli, P. Nature 342, 192–195 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Rizzuto, R., Brini, M., Murgia, M. & Pozzan, T. Science 262, 744–747 (1993).

    Article  ADS  CAS  Google Scholar 

  25. Bird, G. S., Obie, J. F. & Putney, J. W. Jr J. biol. Chem. 267, 18382–18386 (1992).

    CAS  PubMed  Google Scholar 

  26. Toescu, E. C., Gardner, J. M. & Petersen, O. H. Biochem. biophys. Res. Comm. 192, 854–859 (1993).

    Article  CAS  Google Scholar 

  27. Werth, J. L. & Thayer, S. A. J. Neurosci. 14, 348–356 (1994).

    Article  CAS  Google Scholar 

  28. Friel, D. D. & Tsien, R. W. J. Neurosci. 14, 4007–4024 (1994).

    Article  CAS  Google Scholar 

  29. Speksnijder, J. E., Terasaki, M., Hage, W. J., Jaffe, L. F. & Sardet, C. J. Cell Biol. 120, 1337–1346 (1993).

    Article  CAS  Google Scholar 

  30. Bement, W. M. & Capco, D. G. Cell Tissue Res. 255, 183–191 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouaville, L., Ichas, F., Holmuhamedov, E. et al. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441 (1995). https://doi.org/10.1038/377438a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/377438a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing