Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fast and reversible trapping of surface glycine receptors by gephyrin

Abstract

Variations in receptor number at a given synapse are known to contribute to synaptic plasticity, but methods used to establish this idea usually do not allow for the determination of the dynamics of these phenomena. We used single-particle tracking to follow in real time, on the cell surface, movements of the glycine receptor (GlyR) with or without the GlyR stabilizing protein gephyrin. GlyR alternated within seconds between diffusive and confined states. In the absence of gephyrin, GlyR were mostly freely diffusing. Gephyrin induced long confinement periods spatially associated with submembranous clusters of gephyrin. However, even when most receptors were stabilized, they still frequently made transitions through the diffusive state. These data show that receptor number in a cluster results from a dynamic equilibrium between the pools of stabilized and freely mobile receptors. Modification of this equilibrium could be involved in regulation of the number of receptors at synapses.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased clustering of glycine receptor by gephyrin binding.
Figure 2: Increased confinement of glycine receptor movements by gephyrin.
Figure 4: Analysis of confined and diffusive events.
Figure 3: Confinement domains are apposed to gephyrin clusters.
Figure 5: Effect of gephyrin-GFP on the kinetics of confinement and surface exploration by GlyRα1-βgb.

References

  1. Felsenfeld, D. P., Choquet, D. P. & Sheetz, M. P. Ligand binding regulates the directed movement of β1 integrins on fibroblasts. Nature 383, 438–440 (1996).

    Article  CAS  Google Scholar 

  2. Qian, H., Sheetz, M. P. & Elson, E. L. Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys. J. 60, 910–921 (1991).

    Article  CAS  Google Scholar 

  3. Sako, Y. & Kusumi, A. Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J. Cell Biol. 125, 1251–1264 (1994).

    Article  CAS  Google Scholar 

  4. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    Article  CAS  Google Scholar 

  5. Saxton, M. J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    Article  CAS  Google Scholar 

  6. Kuromi, H., Brass, B. & Kidokoro, Y. Formation of acetylcholine receptor clusters at neuromuscular junction in Xenopus cultures. Dev. Biol. 109, 165–176 (1985).

    Article  CAS  Google Scholar 

  7. Froehner, S. C. Regulation of ion channel distribution at synapses. Annu. Rev. Neurosci. 16, 347–368 (1993).

    Article  CAS  Google Scholar 

  8. Craig, A. M., Blackstone, C. D., Huganir, R. L. & Banker, G. Selective clustering of glutamate and gamma-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc. Natl. Acad. Sci. USA 91, 12373–12377 (1994).

    Article  CAS  Google Scholar 

  9. Turrigiano, G. G. AMPA receptors unbound: membrane cycling and synaptic plasticity. Neuron 26, 5–8 (2000).

    Article  CAS  Google Scholar 

  10. Scannevin, R. H. & Huganir, R. L. Postsynaptic organization and regulation of excitatory synapses. Nat. Rev. Neurosci. 1, 133–141 (2000).

    Article  CAS  Google Scholar 

  11. Ziff, E. B. Enlightening the postsynaptic density. Neuron 19, 1163–1174 (1997).

    Article  CAS  Google Scholar 

  12. Luthi, A. et al. Hippocampal LTD expression involves a pool of AMPARs regulated by the NSF–GluR2 interaction. Neuron 24, 389–399 (1999).

    Article  CAS  Google Scholar 

  13. Carroll, R. C., Lissin, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nat. Neurosci. 2, 454–460 (1999).

    Article  CAS  Google Scholar 

  14. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    Article  CAS  Google Scholar 

  15. Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395, 172–177 (1998).

    Article  CAS  Google Scholar 

  16. Sanes, J. R. & Lichtman, J. W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389–442 (1999).

    Article  CAS  Google Scholar 

  17. Akaaboune, M., Culican, S. M., Turney, S. G. & Lichtman, J. W. Rapid and reversible effects of activity on acetylcholine receptor density at the neuromuscular junction in vivo. Science 286, 503–507 (1999).

    Article  CAS  Google Scholar 

  18. Vannier, C. & Triller, A. Biology of the postsynaptic glycine receptor. Int. Rev. Cytol. 176, 201–244 (1997).

    Article  CAS  Google Scholar 

  19. Betz, H. Structure and function of inhibitory glycine receptors. Q. Rev. Biophys. 25, 381–394 (1992).

    Article  CAS  Google Scholar 

  20. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. J. Cell Biol. 101, 683–688 (1985).

    Article  CAS  Google Scholar 

  21. Todd, A. J. An electron microscope study of glycine-like immunoreactivity in laminae I-III of the spinal dorsal horn of the rat. Neuroscience 39, 387–394 (1990).

    Article  CAS  Google Scholar 

  22. Kirsch, J., Wolters, I., Triller, A. & Betz, H. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Nature 366, 745–748 (1993).

    Article  CAS  Google Scholar 

  23. Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor beta subunit. Neuron 15, 563–572 (1995).

    Article  CAS  Google Scholar 

  24. Kirsch, J. & Betz, H. The postsynaptic localization of the glycine receptor-associated protein gephyrin is regulated by the cytoskeleton. J. Neurosci. 15, 4148–4156 (1995).

    Article  CAS  Google Scholar 

  25. Levi, S., Vannier, C. & Triller, A. Strychnine-sensitive stabilization of postsynaptic glycine receptor clusters. J. Cell Sci. 111, 335–345 (1998).

    CAS  Google Scholar 

  26. Kirsch, J. & Betz, H. Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392, 717–720 (1998).

    Article  CAS  Google Scholar 

  27. Meier, J., Meunier-Durmort, C., Forest, C., Triller, A. & Vannier, C. Formation of glycine receptor clusters and their accumulation at synapses. J. Cell Sci. 113, 2783–2795 (2000).

    CAS  PubMed  Google Scholar 

  28. Saxton, M. J. Lateral diffusion in an archipelago. Single-particle diffusion. Biophys. J. 64, 1766–1780 (1993).

    Article  CAS  Google Scholar 

  29. Simson, R., Sheets, E. D. & Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–893 (1995).

    Article  CAS  Google Scholar 

  30. Saffman, P. G. Brownian motion in thin sheets of viscous fluid. J. Fluid Mech. 73, 593–602 (1976).

    Article  Google Scholar 

  31. Kucik, D. F., Elson, E. L. & Sheetz, M. P. Weak dependence of mobility of membrane protein aggregates on aggregate size supports a viscous model of retardation of diffusion. Biophys. J. 76, 314–322 (1999).

    Article  CAS  Google Scholar 

  32. Bechade, C., Colin, I., Kirsch, J., Betz, H. & Triller, A. Expression of glycine receptor alpha subunits and gephyrin in cultured spinal neurons. Eur. J. Neurosci. 8, 429–435 (1996).

    Article  CAS  Google Scholar 

  33. Colin, I., Rostaing, P., Augustin, A. & Triller, A. Localization of components of glycinergic synapses during rat spinal cord development. J. Comp. Neurol. 398, 359–372 (1998).

    Article  CAS  Google Scholar 

  34. Colin, I., Rostaing, P. & Triller, A. Gephyrin accumulates at specific plasmalemma loci during neuronal maturation in vitro. J. Comp. Neurol. 374, 467–479 (1996).

    Article  CAS  Google Scholar 

  35. Levi, S., Chesnoy-Marchais, D., Sieghart, W. & Triller, A. Synaptic control of glycine and GABA(A) receptors and gephyrin expression in cultured motoneurons. J. Neurosci. 19, 7434–7449 (1999).

    Article  CAS  Google Scholar 

  36. Dumoulin, A., Levi, S., Riveau, B., Gasnier, B. & Triller, A. Formation of mixed glycine and GABAergic synapses in cultured spinal cord neurons. Eur. J. Neurosci. 12, 3883–3892 (2000).

    Article  CAS  Google Scholar 

  37. Kirsch, J. Assembly of signaling machinery at the postsynaptic membrane. Curr. Opin. Neurobiol. 9, 329–335 (1999).

    Article  CAS  Google Scholar 

  38. Kneussel, M. et al. Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J. Neurosci. 19, 9289–9297 (1999).

    Article  CAS  Google Scholar 

  39. Oda, Y., Charpier, S., Murayama, Y., Suma, C. & Korn, H. Long-term potentiation of glycinergic inhibitory synaptic transmission. J. Neurophysiol. 74, 1056–1074 (1995).

    Article  CAS  Google Scholar 

  40. Charpier, S., Behrends, J. C., Triller, A., Faber, D. S. & Korn, H. “Latent” inhibitory connections become functional during activity-dependent plasticity. Proc. Natl. Acad. Sci. USA 92, 117–120 (1995).

    Article  CAS  Google Scholar 

  41. Morishita, W. & Sastry, B. R. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J. Neurophysiol. 76, 59–68 (1996).

    Article  CAS  Google Scholar 

  42. Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M. & Lüscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat. Neurosci. 1, 563–571 (1998).

    Article  CAS  Google Scholar 

  43. Grenningloh, G. et al. Cloning and expression of the 58 kd beta subunit of the inhibitory glycine receptor. Neuron 4, 963–970 (1990).

    Article  CAS  Google Scholar 

  44. Grenningloh, G. et al. The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215–220 (1987).

    Article  CAS  Google Scholar 

  45. Sontheimer, H. et al. Functional chloride channels by mammalian cell expression of rat glycine receptor subunit. Neuron 2, 1491–1497 (1989).

    Article  CAS  Google Scholar 

  46. Meunier-Durmort, C., Grimal, H., Sachs, L. M., Demeneix, B. A. & Forest, C. Adenovirus enhancement of polyethylenimine-mediated transfer of regulated genes in differentiated cells. Gene Ther. 4, 808–814 (1997).

    Article  CAS  Google Scholar 

  47. Choquet, D., Felsenfeld, D. P. & Sheetz, M. P. Extracellular matrix rigidity causes strengthening of integrin- cytoskeleton linkages. Cell 88, 39–48 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Ascher, A. Prochiantz and R. Miles for critical reading of the manuscript. Supported by grants from the CNRS, the INSERM, the Fondation pour la Recherche Médicale, the Association Française contre les Myopathies and the council of the Région Aquitaine. J.M. was supported by fellowships from Fonds der Chemischen Industrie (FCI; No. 0653082) and Deutscher Akademischer Austauschdienst (DAAD; No. D/98/03816) and Centre international des étudiants et stagiaires (CIES; No.242708G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Choquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, J., Vannier, C., Sergé, A. et al. Fast and reversible trapping of surface glycine receptors by gephyrin. Nat Neurosci 4, 253–260 (2001). https://doi.org/10.1038/85099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/85099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing