Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Japanese quail (Coturnix japonica) as a laboratory animal model

Abstract

For the past 50 years, the Japanese quail (Coturnix japonica) has been a popular animal model in numerous fields of research. The quail's 16-d developmental period and its easily accessible embryo make C. japonica a convenient model for studies of developmental biology. Because its lifespan is relatively short and its physiology is comparable to that of humans, the adult quail is useful for studies of aging and disease. The authors describe the Japanese quail as an animal model and, drawing on their experience raising a quail colony at the California Institute of Technology, present detailed guidelines for the husbandry of the species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adult Japanese quail.
Figure 2: Incubation and hatching of Japanese quail eggs.
Figure 3: Hatchling Japanese quail.
Figure 4: Adult Japanese quail.

Similar content being viewed by others

References

  1. Woodard, A.E., Abplanalp, H., Wilson, W.O. & Vohra, P. Japanese Quail Husbandry in the Laboratory (University of California, Davis, 1973). <http://animalscience.ucdavis.edu/Avian/Coturnix.pdf>

  2. Mills, A.D., Crawford, L.L., Domjan, M. & Faure, J.M. The behavior of the Japanese or domestic quail Coturnix japonica. Neurosci. Behav. Rev. 21, 261–281 (1997).

    Article  CAS  Google Scholar 

  3. Padgett C.S. & Ivey, W.D. Coturnix quail as a laboratory research animal. Science 129, 267–268 (1959).

    Article  CAS  Google Scholar 

  4. Padgett, C.S. & Ivey, W.D. The normal embryology of the Coturnix quail. Anat. Rec. 137, 1–11 (1960).

    Article  CAS  Google Scholar 

  5. Hamburger, V. & Hamilton, H. A series of normal stages in the development of the chick embryo. J. Morph. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  6. Zacchei, A.M. [The embryonal development of the Japanese quail (Coturnix coturnix japonica T. and S.); article in Italian] Arch. Ital. Anat. Embriol. 66, 36–62 (1961).

    CAS  PubMed  Google Scholar 

  7. Fitzgerald, T.C. The Coturnix Quail: Anatomy and Histology (Iowa State University Press, Ames, IA, 1969).

    Google Scholar 

  8. Ratnamohan, N. The management of Japanese quail and their use in virological research: a review. Vet. Res. Comm. 9, 1–14 (1985).

    Article  CAS  Google Scholar 

  9. Le Douarin, N. & Kalcheim, C. The Neural Crest (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  10. Kulsea, P.M. & Fraser, S.E. Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant cultures. Dev. Biol. 204, 327–344 (1998).

    Article  Google Scholar 

  11. Lalloue, F.L. & Ayer- Le Lievre, C.S. Experimental study of early olfactory neuron differentiation and nerve formation using quail-chick chimeras. Int. J. Dev. Biol. 49, 193–200 (2005).

    Article  CAS  Google Scholar 

  12. Scott, B.B. & Lois, C. Generation of tissue-specific transgenic birds with lentiviral vectors. Proc. Natl. Acad. Sci. USA 102, 16443–16447 (2005).

    Article  CAS  Google Scholar 

  13. Poynter, G. & Lansford, R. in Avian Embryology (Methods of Cell Biology) 2nd edn., vol. 87 (Bronner-Fraser, M., ed.) 282–292 (Academic, San Diego, 2008).

    Google Scholar 

  14. Mizutani, M. Establishment of inbred strains of chicken and Japanese quail and their potential as animal models. Exp. Anim. 51, 417–429 (2002).

    Article  CAS  Google Scholar 

  15. Smith, S.M. in Alcohol: Methods and Protocols (Methods in Molecular Biology) (Nagy, L.E., ed.) 75–84 (Humana, Totawa, NJ, 2008).

    Book  Google Scholar 

  16. Barrett, J.E., Wells, D.C., Paulsen, A.Q. & Conrad, G.W. Embryonic quail eye development in microgravity. J. Appl. Physiol. 88, 1614–1622 (2000).

    Article  CAS  Google Scholar 

  17. Kovach, J.K. The behaviour of Japanese quail; review of the literature from a bioethological perspective. Appl. Anim. Ethol. 1, 77–102 (1974),

    Article  Google Scholar 

  18. Ottinger, M.A. et al. The Japanese quail: a model for studying reproductive aging of hypothalamic systems. Exp. Gerontol. 39, 1679–1693 (2004).

    Article  CAS  Google Scholar 

  19. Holmes, D.J. & Ottinger, M.A. Birds as long-lived animal models for the study of aging. Exp. Gerontol. 38, 1365–1375 (2003).

    Article  CAS  Google Scholar 

  20. Follett, B.K., Kumar, V. & Juss, T.S. Circadian nature of the photoperiodic clock in Japanese quail. J. Comp. Physiol. 171, 533–540 (1992).

    Article  CAS  Google Scholar 

  21. Wada, M. Low temperature and short days together induce thyroid activation and suppression of LH release in Japanese quail. Gen. Comp. Endocrinol. 90, 355–363 (1993).

    Article  CAS  Google Scholar 

  22. Watson, J.T., Abdelnabi, M., Wersinger, S., Ottinger, M.A. & Adkins-Regen, E. Circulating estradiol and the activation of male and female copulatory behavior in Japanese quail (Coturnix japonica). Gen. Comp. Endocrinol. 77, 229–238 (1990).

    Article  CAS  Google Scholar 

  23. Ottinger, M.A. et al. Consequences of endocrine disrupting chemicals on reproductive endocrine function in birds: establishing reliable end points of exposure. Domest. Anim. Endocrinol. 29, 411–419 (2005).

    Article  CAS  Google Scholar 

  24. Cheng, K.M. & Kimura, M. in Poultry Breeding and Genetics (Crawford, R.D., ed.) 333–362 (Elsevier, Amsterdam, 1990).

    Google Scholar 

  25. Minvielle, F., Grossman, R. & Gourichon, D. Development and performances of a Japanese quail line homozygous for the diabetes insipidus (di) mutation. Poult. Sci. 86, 249–254 (2007).

    Article  CAS  Google Scholar 

  26. Kikuchi, T. et al. Clinical and metabolic correction of pompe disease by enzyme therapy in acid maltase deficient quail. J. Clin. Invest. 101, 827–833 (1998).

    Article  CAS  Google Scholar 

  27. Yuan, Y.V., Kitts, D.D. & Godin, D.V. Influence of dietary cholesterol and fat source on atherosclerosis in Japanese quail (Coturnix japonica). Br. J. Nutr. 78, 993–1014 (1997).

    Article  CAS  Google Scholar 

  28. St. Clair, R.W. The contribution of avian models to our understanding of atherosclerosis and their promise for the future. Lab. Anim. Sci. 48, 565–568 (1998).

    CAS  PubMed  Google Scholar 

  29. Siegel, H.S., Hammad, S.M. & Marks, H.L. Atherosclerosis in Japanese quail males selected for high or low plasma cholesterol. Poult. Sci. 74, 1712–1716 (1995).

    Article  CAS  Google Scholar 

  30. Nestor, K.E., Bacon, W.L., Anthony, N.B. & Noble, D.O. Divergent selection for body weight and yolk precursor in Coturnix coturnix japonica. 11. Correlated responses over 30 generations. Poult. Sci. 75, 472–477 (1996).

    Article  CAS  Google Scholar 

  31. Aggrey, S.E., Ankra-Badu, G.A. & Marks, H.L. Effect of long-term divergent selection on growth characteristics in Japanese quail. Poult. Sci. 82, 538–542 (2003).

    Article  CAS  Google Scholar 

  32. Bennett, R.A. in Avian Medicine: Principles and Application, abridged (Ritchie, B.W., Harrison, G.J. & Harrison, L.R., eds.) 600–610 (Wingers, Lake Worth, FL, 1997).

    Google Scholar 

  33. Howes, J.R. Coturnix quail for veterinary research. J. Am. Vet. Med. Assoc. 140, 162–163 (1962).

    CAS  PubMed  Google Scholar 

  34. Makarova, N.V., Ozaki, H., Kida, H., Webster, R.G. & Perez, D.R. Replication and transmission of influenza viruses in Japanese quail. Virology 310, 8–15 (2003).

    Article  CAS  Google Scholar 

  35. Singh, A., Oberoi, M.S. & Singh, B. Pathogenicity of quail's inclusion body hepatitis virus (avian adenovirus-1) for Japanese quails and broiler chicks. Vet. Res. Commun. 19, 545–551 (1995).

    Article  CAS  Google Scholar 

  36. Barnes, H.J. Diseases of quail. Vet. Clin. North. Am. Small. Anim. Pract. 17, 1109–1144 (1987).

    Article  CAS  Google Scholar 

  37. Sasazaki, S., Hinenoya, T., Lin, B., Fujiwara, A. & Mannen, H. A comparative map of macrochromosomes between chicken and Japanese quail based on orthologous genes. Anim. Genet. 37, 316–320 (2006).

    Article  CAS  Google Scholar 

  38. Kayang, B.B. et al. Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence. BMC Genomics 7, 101–118 (2006).

    Article  Google Scholar 

  39. Minvielle, F. The future of Japanese quail for research and production. Worlds Poult. Sci. J. 60, 500–507 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rusty Lansford.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huss, D., Poynter, G. & Lansford, R. Japanese quail (Coturnix japonica) as a laboratory animal model. Lab Anim 37, 513–519 (2008). https://doi.org/10.1038/laban1108-513

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/laban1108-513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing