Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prefrontal synaptic markers of cocaine addiction-like behavior in rats

Abstract

Defining the drug-induced neuroadaptations specifically associated with the behavioral manifestation of addiction is a daunting task. To address this issue, we used a behavioral model that differentiates rats controlling their drug use (Non-Addict-like) from rats undergoing transition to addiction (Addict-like). Dysfunctions in prefrontal cortex (PFC) synaptic circuits are thought to be responsible for the loss of control over drug taking that characterizes addicted individuals. Here, we studied the synaptic alterations in prelimbic PFC (pPFC) circuits associated with transition to addiction. We discovered that some of the changes induced by cocaine self-administration (SA), such as the impairment of the endocannabinoid-mediated long-term synaptic depression (eCB-LTD) was similarly abolished in Non-Addict- and Addict-like rats and thus unrelated to transition to addiction. In contrast, metabotropic glutamate receptor 2/3-mediated LTD (mGluR2/3-LTD) was specifically suppressed in Addict-like rats, which also show a concomitant postsynaptic plasticity expressed as a change in the relative contribution of AMPAR and NMDAR to basal glutamate-mediated synaptic transmission. Addiction-associated synaptic alterations in the pPFC were not fully developed at early stages of cocaine SA, when addiction-like behaviors are still absent, suggesting that pathological behaviors appear once the pPFC is compromised. These data identify specific synaptic impairments in the pPFC associated with addiction and support the idea that alterations of synaptic plasticity are core markers of drug dependence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Deroche-Gamonet V, Piazza PV . Transition to addiction. In: Koon G, Le Moal M (eds) Encyclopedia of Behavioral Neuroscience. Academic Press: Oxford, 2010.

    Google Scholar 

  2. Kalivas PW . The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009; 10: 561–572.

    Article  CAS  PubMed  Google Scholar 

  3. Koob GF, Le Moal M . Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 2005; 8: 1442–1444.

    Article  CAS  PubMed  Google Scholar 

  4. Hyman SE, Malenka RC, Nestler EJ . Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 2006; 29: 565–598.

    Article  CAS  PubMed  Google Scholar 

  5. Renthal W, Nestler EJ . Epigenetic mechanisms in drug addiction. Trends Mol Med 2008; 14: 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Luscher C, Malenka RC . Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011; 69: 650–663.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kalivas PW . How do we determine which drug-induced neuroplastic changes are important? Nat Neurosci 2005; 8: 1440–1441.

    Article  CAS  PubMed  Google Scholar 

  8. Deroche-Gamonet V, Belin D, Piazza PV . Evidence for addiction-like behavior in the rat. Science 2004; 305: 1014–1017.

    Article  CAS  PubMed  Google Scholar 

  9. Belin D, Balado E, Piazza PV, Deroche-Gamonet V . Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats. Biol Psychiatry 2009; 65: 863–868.

    Article  CAS  PubMed  Google Scholar 

  10. Belin D, Berson N, Balado E, Piazza PV, Deroche-Gamonet V . High-novelty-preference rats are predisposed to compulsive cocaine self-administration. Neuropsychopharmacology 2011; 36: 569–579.

    Article  CAS  PubMed  Google Scholar 

  11. Kasanetz F, Deroche-Gamonet V, Berson N, Balado E, Lafourcade M, Manzoni O et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 2010; 328: 1709–1712.

    Article  CAS  PubMed  Google Scholar 

  12. Kauer JA, Malenka RC . Synaptic plasticity and addiction. Nat Rev Neurosci 2007; 8: 844–858.

    Article  CAS  PubMed  Google Scholar 

  13. Everitt BJ, Robbins TW . Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 2005; 8: 1481–1489.

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein RZ, Craig AD, Bechara A, Garavan H, Childress AR, Paulus MP et al. The neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci 2009; 13: 372–380.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kalivas PW, Volkow N, Seamans J . Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 2005; 45: 647–650.

    Article  CAS  PubMed  Google Scholar 

  16. Sun W, Rebec GV . Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J Neurosci 2006; 26: 8004–8008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ . Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 2002; 78: 610–624.

    Article  CAS  PubMed  Google Scholar 

  18. Robinson TE, Gorny G, Mitton E, Kolb B . Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse 2001; 39: 257–266.

    Article  CAS  PubMed  Google Scholar 

  19. Peters J, Kalivas PW, Quirk GJ . Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem 2009; 16: 279–288.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lasseter HC, Xie X, Ramirez DR, Fuchs RA . Prefrontal cortical regulation of drug seeking in animal models of drug relapse. Curr Top Behav Neurosci 2010; 3: 101–117.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Capriles N, Rodaros D, Sorge RE, Stewart J . A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 2003; 168: 66–74.

    Article  CAS  Google Scholar 

  22. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn, revised edn. American Psychiatric Press: Washington, DC, 2000.

  23. Kasanetz F, Manzoni OJ . Maturation of excitatory synaptic transmission of the rat nucleus accumbens from juvenile to adult. J Neurophysiol 2009; 101: 2516–2527.

    Article  CAS  PubMed  Google Scholar 

  24. Lafourcade M, Elezgarai I, Mato S, Bakiri Y, Grandes P, Manzoni OJ . Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex. PLoS One 2007; 2: e709.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Revest JM, Kaouane N, Mondin M, Le Roux A, Rouge-Pont F, Vallee M et al. The enhancement of stress-related memory by glucocorticoids depends on synapsin-Ia/Ib. Mol Psychiatry 2010; 15: 1125, 1140–1151.

    Google Scholar 

  26. Revest JM, Di Blasi F, Kitchener P, Rouge-Pont F, Desmedt A, Turiault M et al. The MAPK pathway and Egr-1 mediate stress-related behavioral effects of glucocorticoids. Nat Neurosci 2005; 8: 664–672.

    Article  CAS  PubMed  Google Scholar 

  27. Marrs WR, Blankman JL, Horne EA, Thomazeau A, Lin YH, Coy J et al. The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat Neurosci 2010; 13: 951–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maldonado R, Valverde O, Berrendero F . Involvement of the endocannabinoid system in drug addiction. Trends Neurosci 2006; 29: 225–232.

    Article  CAS  PubMed  Google Scholar 

  29. De Vries TJ, Schoffelmeer AN . Cannabinoid CB1 receptors control conditioned drug seeking. Trends Pharmacol Sci 2005; 26: 420–426.

    Article  CAS  PubMed  Google Scholar 

  30. De Vries TJ, Shaham Y, Homberg JR, Crombag H, Schuurman K, Dieben J et al. A cannabinoid mechanism in relapse to cocaine seeking. Nat Med 2001; 7: 1151–1154.

    Article  CAS  PubMed  Google Scholar 

  31. Orio L, Edwards S, George O, Parsons LH, Koob GF . A role for the endocannabinoid system in the increased motivation for cocaine in extended-access conditions. J Neurosci 2009; 29: 4846–4857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soria G, Mendizabal V, Tourino C, Robledo P, Ledent C, Parmentier M et al. Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 2005; 30: 1670–1680.

    Article  CAS  PubMed  Google Scholar 

  33. Fourgeaud L, Mato S, Bouchet D, Hemar A, Worley PF, Manzoni OJ . A single in vivo exposure to cocaine abolishes endocannabinoid-mediated long-term depression in the nucleus accumbens. J Neurosci 2004; 24: 6939–6945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang CC, Yang PC, Lin HJ, Hsu KS . Repeated cocaine administration impairs group II metabotropic glutamate receptor-mediated long-term depression in rat medial prefrontal cortex. J Neurosci 2007; 27: 2958–2968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robbe D, Alonso G, Chaumont S, Bockaert J, Manzoni OJ . Role of p/q-Ca2+ channels in metabotropic glutamate receptor 2/3-dependent presynaptic long-term depression at nucleus accumbens synapses. J Neurosci 2002; 22: 4346–4356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moussawi K, Kalivas PW . Group II metabotropic glutamate receptors (mGlu2/3) in drug addiction. Eur J Pharmacol 2010; 639: 115–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thomas MJ, Beurrier C, Bonci A, Malenka RC . Long-term depression in the nucleus accumbens: a neural correlate of behavioral sensitization to cocaine. Nat Neurosci 2001; 4: 1217–1223.

    Article  CAS  PubMed  Google Scholar 

  38. Dumont EC, Mark GP, Mader S, Williams JT . Self-administration enhances excitatory synaptic transmission in the bed nucleus of the stria terminalis. Nat Neurosci 2005; 8: 413–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ungless MA, Whistler JL, Malenka RC, Bonci A . Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 2001; 411: 583–587.

    Article  CAS  PubMed  Google Scholar 

  40. Vanderschuren LJ, Everitt BJ . Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 2004; 305: 1017–1019.

    Article  CAS  PubMed  Google Scholar 

  41. Adewale AS, Platt DM, Spealman RD . Pharmacological stimulation of group ii metabotropic glutamate receptors reduces cocaine self-administration and cocaine-induced reinstatement of drug seeking in squirrel monkeys. J Pharmacol Exp Ther 2006; 318: 922–931.

    Article  CAS  PubMed  Google Scholar 

  42. Baptista MA, Martin-Fardon R, Weiss F . Preferential effects of the metabotropic glutamate 2/3 receptor agonist LY379268 on conditioned reinstatement versus primary reinforcement: comparison between cocaine and a potent conventional reinforcer. J Neurosci 2004; 24: 4723–4727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peters J, Kalivas PW . The group II metabotropic glutamate receptor agonist, LY379268, inhibits both cocaine- and food-seeking behavior in rats. Psychopharmacology (Berl) 2006; 186: 143–149.

    Article  CAS  Google Scholar 

  44. Morishima Y, Miyakawa T, Furuyashiki T, Tanaka Y, Mizuma H, Nakanishi S . Enhanced cocaine responsiveness and impaired motor coordination in metabotropic glutamate receptor subtype 2 knockout mice. Proc Natl Acad Sci USA 2005; 102: 4170–4175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spanagel R . Are metabotropic glutamate receptors promising targets for the treatment of alcoholism? Biol Psychiatry 2010; 67: 798–799.

    Article  PubMed  Google Scholar 

  46. Moussawi K, Pacchioni A, Moran M, Olive MF, Gass JT, Lavin A et al. N-Acetylcysteine reverses cocaine-induced metaplasticity. Nat Neurosci 2009; 12: 182–189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moussawi K, Zhou W, Shen H, Reichel CM, See RE, Carr DB et al. Reversing cocaine-induced synaptic potentiation provides enduring protection from relapse. Proc Natl Acad Sci USA 2010; 108: 385–390.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bowers MS, McFarland K, Lake RW, Peterson YK, Lapish CC, Gregory ML et al. Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 2004; 42: 269–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Xi ZX, Ramamoorthy S, Baker DA, Shen H, Samuvel DJ, Kalivas PW . Modulation of group II metabotropic glutamate receptor signaling by chronic cocaine. J Pharmacol Exp Ther 2002; 303: 608–615.

    Article  CAS  PubMed  Google Scholar 

  50. Chen BT, Bowers MS, Martin M, Hopf FW, Guillory AM, Carelli RM et al. Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 2008; 59: 288–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin M, Chen BT, Hopf FW, Bowers MS, Bonci A . Cocaine self-administration selectively abolishes LTD in the core of the nucleus accumbens. Nat Neurosci 2006; 9: 868–869.

    Article  CAS  PubMed  Google Scholar 

  52. Mu P, Moyer JT, Ishikawa M, Zhang Y, Panksepp J, Sorg BA et al. Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. J Neurosci 2010; 30: 3689–3699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCutcheon JE, Wang X, Tseng KY, Wolf ME, Marinelli M . Calcium-permeable AMPA receptors are present in nucleus accumbens synapses after prolonged withdrawal from cocaine self-administration but not experimenter-administered cocaine. J Neurosci 2011; 31: 5737–5743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang CC, Lin HJ, Hsu KS . Repeated cocaine administration promotes long-term potentiation induction in rat medial prefrontal cortex. Cereb Cortex 2007; 17: 1877–1888.

    Article  PubMed  Google Scholar 

  55. Dong Y, Nasif FJ, Tsui JJ, Ju WY, Cooper DC, Hu XT et al. Cocaine-induced plasticity of intrinsic membrane properties in prefrontal cortex pyramidal neurons: adaptations in potassium currents. J Neurosci 2005; 25: 936–940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heifets BD, Castillo PE . Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Physiol 2009; 71: 283–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grueter BA, Gosnell HB, Olsen CM, Schramm-Sapyta NL, Nekrasova T, Landreth GE et al. Extracellular-signal regulated kinase 1-dependent metabotropic glutamate receptor 5-induced long-term depression in the bed nucleus of the stria terminalis is disrupted by cocaine administration. J Neurosci 2006; 26: 3210–3219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Swanson CJ, Baker DA, Carson D, Worley PF, Kalivas PW . Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: a potential role for Homer. J Neurosci 2001; 21: 9043–9052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Stuber GD, Klanker M, de Ridder B, Bowers MS, Joosten RN, Feenstra MG et al. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 2008; 321: 1690–1692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yin HH, Mulcare SP, Hilario MR, Clouse E, Holloway T, Davis MI et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat Neurosci 2009; 12: 333–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mameli M, Halbout B, Creton C, Engblom D, Parkitna JR, Spanagel R et al. Cocaine-evoked synaptic plasticity: persistence in the VTA triggers adaptations in the NAc. Nat Neurosci 2009; 12: 1036–1041.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by INSERM, Région Aquitaine, ANR grant (2005; P-VP and OM), EU-STREP-PheCOMP grant (FP6; P-VP), MILDT/INCa/INSERM grant (2008; VD-G and OM) and AXA Research Fund (FK). We thank A Le Roux and V Roullot-Lacarriére for their technical assistance with the western blot experiments.

Author contributions: FK and ML performed the electrophysiology experiments, conducted the data analyses and contributed to the design of the experiments. VD-G designed and supervised the behavioral experiments, and conducted the data analyses. J-MR designed and conducted the immunoblotting analyses. NB, EB, J-FF and PR conducted the behavioral experiments. P-VP and OJM supervised the entire project. FK, VD-G, P-VP and OJM wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P-V Piazza or O J Manzoni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasanetz, F., Lafourcade, M., Deroche-Gamonet, V. et al. Prefrontal synaptic markers of cocaine addiction-like behavior in rats. Mol Psychiatry 18, 729–737 (2013). https://doi.org/10.1038/mp.2012.59

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.59

Keywords

This article is cited by

Search

Quick links