Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The ESC/E(Z) complex, an effector of response to ovarian steroids, manifests an intrinsic difference in cells from women with premenstrual dysphoric disorder

Abstract

Clinical evidence suggests that mood and behavioral symptoms in premenstrual dysphoric disorder (PMDD), a common, recently recognized, psychiatric condition among women, reflect abnormal responsivity to ovarian steroids. This differential sensitivity could be due to an unrecognized aspect of hormonal signaling or a difference in cellular response. In this study, lymphoblastoid cell line cultures (LCLs) from women with PMDD and asymptomatic controls were compared via whole-transcriptome sequencing (RNA-seq) during untreated (ovarian steroid-free) conditions and following hormone treatment. The women with PMDD manifested ovarian steroid-triggered behavioral sensitivity during a hormone suppression and addback clinical trial, and controls did not, leading us to hypothesize that women with PMDD might differ in their cellular response to ovarian steroids. In untreated LCLs, our results overall suggest a divergence between mRNA (for example, gene transcription) and protein (for example, RNA translation in proteins) for the same genes. Pathway analysis of the LCL transcriptome revealed, among others, over-expression of ESC/E(Z) complex genes (an ovarian steroid-regulated gene silencing complex) in untreated LCLs from women with PMDD, with more than half of these genes over-expressed as compared with the controls, and with significant effects for MTF2, PHF19 and SIRT1 (P<0.05). RNA and protein expression of the 13 ESC/E(Z) complex genes were individually quantitated. This pattern of increased ESC/E(Z) mRNA expression was confirmed in a larger cohort by qRT-PCR. In contrast, protein expression of ESC/E(Z) genes was decreased in untreated PMDD LCLs with MTF2, PHF19 and SIRT1 all significantly decreased (P<0.05). Finally, mRNA expression of several ESC/E(Z) complex genes were increased by progesterone in controls only, and decreased by estradiol in PMDD LCLs. These findings demonstrate that LCLs from women with PMDD manifest a cellular difference in ESC/E(Z) complex function both in the untreated condition and in response to ovarian hormones. Dysregulation of ESC/E(Z) complex function could contribute to PMDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Association: Arlington, VA, USA, 2013.

  2. Yonkers K, O'Brien PMS, Eriksson E . Premenstrual syndrome. Lancet 2008; 371: 1200–1210.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Epperson CN, Steiner M, Hartlage SA, Eriksson E, Schmidt PJ, Jones I et al. Premenstrual dysphoric disorder: evidence for a new category for DSM-5. Am J Psychiatry 2012; 169: 465–475.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pearlstein T, Steiner M . Premenstrual dysphoric disorder: burden of illness and treatment update. J Psychiatry Neurosci 2008; 33: 291–301.

    PubMed  PubMed Central  Google Scholar 

  5. Halbreich U, Borenstein J, Pearlstein T, Kahn LS . The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology 2003; 28: 1–23.

    CAS  PubMed  Google Scholar 

  6. Schiller CE, Johnson AL, Abate AC, Rubinow DR, Schmidt PJ . Reproductive steroid regulation of mood and behavior. Compr Physiol 2016; 13: 1135–1160.

    Article  Google Scholar 

  7. Hammarback S, Ekholm UB, Backstrom T . Spontaneous anovulation causing disappearance of cyclical symptoms in women with the premenstrual syndrome. Acta Endocrinol 1991; 125: 132–137.

    Article  CAS  Google Scholar 

  8. Schmidt PJ, Nieman LK, Danaceau MA, Adams LF, Rubinow DR . Differential behavioral effects of gonadal steroids in women with and in those without premenstrual syndrome. N Engl J Med 1998; 338: 209–216.

    Article  CAS  PubMed  Google Scholar 

  9. Helvacioglu A, Yeoman RR, Hazelton JM, Aksel S . Premenstrual syndrome and related hormonal changes: long-acting gonadotropin releasing hormone agonist treatment. J Reprod Med 1993; 38: 864–870.

    CAS  PubMed  Google Scholar 

  10. Brown CS, Ling FW, Andersen RN, Farmer RG, Arheart KL . Efficacy of depot leuprolide in premenstrual syndrome: effect of symptom severity and type in a controlled trial. Obstet Gynecol 1994; 84: 779–786.

    CAS  PubMed  Google Scholar 

  11. Freeman EW, Sondheimer SJ, Rickels K, Albert J . Gonadotropin-releasing hormone agonist in treatment of premenstrual symptoms: with and without comorbidity of depression: a pilot study. J Clin Psychiatry 1993; 54: 192–195.

    CAS  PubMed  Google Scholar 

  12. West CP, Hillier H . Ovarian suppression with the gonadotrophin-releasing hormone agonist goserelin (Zoladex) in management of the premenstrual tension syndrome. Hum Reprod 1994; 9: 1058–1063.

    Article  CAS  PubMed  Google Scholar 

  13. Hussain SY, Massil JH, Matta WH, Shaw RW, O'Brien PMS . Buserelin in premenstrual syndrome. Gynecol Endocrinol 1992; 6: 57–64.

    Article  CAS  PubMed  Google Scholar 

  14. Protopopescu X, Pan H, Altemus M, Tuescher O, Polanecsky M, McEwen B et al. Orbitofrontal cortex activity related to emotional processing changes across the menstrual cycle. Proc Natl Acad Sci USA 2005; 102: 16060–16065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Protopopescu X, Butler T, Pan H, Root J, Altemus M, Polanecsky M et al. Hippocampal structural changes across the menstrual cycle. Hippocampus 2008; 18: 985–988.

    Article  PubMed  Google Scholar 

  16. Protopopescu X, Tuescher O, Pan H, Epstein J, Root J, Chang L et al. Toward a functional neuroanatomy of premenstrual dysphoric disorder. J Affect Disord 2007; 108: 87–94.

    Article  PubMed  Google Scholar 

  17. Baller EB, Wei SM, Kohn P, Rubinow DR, Alarcon G, Schmidt PJ et al. Abnormalities of dorsolateral prefrontal function in women with premenstrual dysphoric disorder: a multimodal neuroimaging study. Am J Psychiatry 2013; 170: 305–314.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Andreano JM, Cahill L . Menstrual cycle modulation of medial temporal activity evoked by negative emotion. Neuroimage 2010; 53: 1286–1293.

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein JM, Jerram M, Abbs B, Whitfield-Gabrieli S, Makris N . Sex differences in stress response circuitry activation dependent on female hormonal cycle. J Neurosci 2010; 30: 431–438.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gingnell M, Bannbers E, Wikstrom J, Fredrikson M, Sundstrom-Poromaa I . Premenstrual dysphoric disorder and prefrontal reactivity during anticipation of emotional stimuli. Eur Neuropsychopharmacol 2013; 23: 1474–1483.

    Article  CAS  PubMed  Google Scholar 

  21. Sundstrom PI, Gingnell M . Menstrual cycle influence on cognitive function and emotion processing-from a reproductive perspective. Front Neurosci 2014; 8: 380.

    Google Scholar 

  22. Dreher J, Schmidt PJ, Kohn P, Furman D, Rubinow D, Berman KF . Menstrual cycle phase modulates reward-related neural function in women. Proc Natl Acad Sci USA 2007; 104: 2465–2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berman KF, Schmidt PJ, Rubinow DR, Danaceau MA, Van Horn JD, Esposito G et al. Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study in women. Proc Natl Acad Sci USA 1997; 94: 8836–8841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Toffoletto S, Lanzenberger R, Gingnell M, Sundstrom-Poromaa I, Comasco E . Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: a systematic review. Psychoneuroendocrinology 2014; 50: 28–52.

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt PJ, Ben Dor R, Martinez PE, Guerrieri GM, Harsh VL, Thompson K et al. Effects of estradiol withdrawal on mood in women with past perimenopausal depression: a randomized clinical trial. JAMA Psychiatry 2015; 72: 714–726.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bloch M, Schmidt PJ, Danaceau M, Murphy J, Nieman L, Rubinow DR . Effects of gonadal steroids in women with a history of postpartum depression. Am J Psychiatry 2000; 157: 924–930.

    Article  CAS  PubMed  Google Scholar 

  27. Mehta D, Newport DJ, Frishman G, Kraus L, Rex-Haffner M, Ritchie JC et al. Early predictive biomarkers for postpartum depression point to a role for estrogen receptor signaling. Psychol Med 2014; 44: 2309–2322.

    Article  CAS  PubMed  Google Scholar 

  28. Guintivano J, Arad M, Gould TD, Payne JL, Kaminsky ZA . Antenatal prediction of postpartum depression with blood DNA methylation biomarkers. Mol Psychiatry 2014; 19: 560–567.

    Article  CAS  PubMed  Google Scholar 

  29. Gladkevich A, Kauffman HF, Korf J . Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 559–576.

    Article  PubMed  Google Scholar 

  30. Mohr S, Liew CC . The peripheral-blood transcriptome: new insights into disease and risk assessment. Trends Mol Med 2007; 13: 422–432.

    Article  CAS  PubMed  Google Scholar 

  31. Nicholson AC, Unger ER, Mangalathu R, Ojaniemi H, Vernon SD . Exploration of neuroendocrine and immune gene expression in peripheral blood mononuclear cells. Brain Res Mol Brain Res 2004; 129: 193–197.

    Article  CAS  PubMed  Google Scholar 

  32. Sie L, Loong S, Tan EK . Utility of lymphoblastoid cell lines. J Neurosci Res 2009; 87: 1953–1959.

    Article  CAS  PubMed  Google Scholar 

  33. de Mello AS, Provin F, Michelin-Tireli K, Camelier MV, Coelho JC . Feasibility of using cryopreserved lymphoblastoid cells to diagnose some lysosomal storage diseases. Cell Prolif 2010; 43: 164–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bahn S, Chan MK . What can we learn about depression from gene expression in peripheral tissues? Biol Psychiatry 2015; 77: 207–209.

    Article  CAS  PubMed  Google Scholar 

  35. Iga J, Ueno S, Ohmori T . Molecular assessment of depression from mRNAs in the peripheral leukocytes. Ann Med 2008; 40: 336–342.

    Article  CAS  PubMed  Google Scholar 

  36. Karsten SL, Kudo LC, Bragin AJ . Use of peripheral blood transcriptome biomarkers for epilepsy prediction. Neurosci Lett 2011; 497: 213–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tylee DS, Kawaguchi DM, Glatt SJ . On the outside, looking in: a review and evaluation of the comparability of blood and brain ‘-omes’. Am J Med Genet B Neuropsychiatr Genet 2013; 162B: 595–603.

    Article  CAS  PubMed  Google Scholar 

  38. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association: Washington, DC, USA, 1994.

  39. Rubinow DR, Roy-Byrne PP, Hoban MC, Gold PW, Post RM . Prospective assessment of menstrually related mood disorders. Am J Psychiatry 1984; 141: 684–686.

    Article  CAS  PubMed  Google Scholar 

  40. Endicott J, Nee J, Cohen J, Halbreich U . Premenstrual changes: patterns and correlates of daily ratings. J Affect Disord 1986; 10: 127–135.

    Article  CAS  PubMed  Google Scholar 

  41. First MB, Spitzer RL, Gibbon M, Williams JBW . Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition (SCID-IP). Biometrics Research, New York State Psychiatric Institute: New York, NY, USA, 2002.

    Google Scholar 

  42. Halbreich U, Backstrom T, Eriksson E, O'Brien S, Calil H, Ceskova E et al. Clinical diagnosis criteria for premenstrual syndrome and guidelines for their quantification for research studies. Gynecol Endocrinol 2007; 23: 123–130.

    Article  PubMed  Google Scholar 

  43. Halbreich U . The diagnosis of premenstrual syndromes and premenstrual dysphoric disorder - clinical procedures and research perspectives. Gynecol Endocrinol 2004; 19: 320–334.

    Article  CAS  PubMed  Google Scholar 

  44. Freeman EW, Sondheimer SJ, Rickels K . Gonadotropin-releasing hormone agonist in the treatment of premenstrual symptoms with and without ongoing dysphoria: a controlled study. Psychopharmacol Bull 1997; 33: 303–309.

    CAS  PubMed  Google Scholar 

  45. Ben Dor R, Harsh VL, Fortinsky P, Koziol DE, Rubinow DR, Schmidt PJ . Effects of pharmacologically-induced hypogonadism on mood and behavior in healthy young women. Am J Psychiatry 2013; 170: 426–433.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oh HM, Oh JM, Choi SC, Kim SW, Han WC, Kim TH et al. An efficient method for the rapid establishment of Epstein-Barr virus immortalization of human B lymphocytes. Cell Prolif 2003; 36: 191–197.

    Article  PubMed  Google Scholar 

  47. Holmans P . Statistical methods for pathway analysis of genome-wide data for association with complex genetic traits. Adv Genet 2010; 72: 141–179.

    Article  PubMed  Google Scholar 

  48. O'Neill RA, Bhamidipati A, Bi X, Deb-Basu D, Cahill L, Ferrante J et al. Isoelectric focusing technology quantifies protein signaling in 25 cells. Proc Natl Acad Sci USA 2006; 103: 16153–16158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS . Histone methyltransferase EZH2 is transcriptionally induced by estradiol as well as estrogenic endocrine disruptors bisphenol-A and diethylstilbestrol. J Mol Biol 2014; 426: 3426–3441.

    Article  CAS  PubMed  Google Scholar 

  50. Pal B, Bouras T, Shi W, Vaillant F, Sheridan JM, Fu N et al. Global changes in the mammary epigenome are induced by hormonal cues and coordinated by Ezh2. Cell Rep 2013; 3: 411–426.

    Article  CAS  PubMed  Google Scholar 

  51. Bredfeldt TG, Greathouse KL, Safe SH, Hung MC, Bedford MT, Walker CL . Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol 2010; 24: 993–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res 2014; 16: 491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tamm-Rosenstein K, Simm J, Suhorutshenko M, Salumets A, Metsis M . Changes in the transcriptome of the human endometrial Ishikawa cancer cell line induced by estrogen, progesterone, tamoxifen, and mifepristone (RU486) as detected by RNA-sequencing. PLoS ONE 2013; 8: e68907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han L, Wang P, Zhao G, Wang H, Wang M, Chen J et al. Upregulation of SIRT1 by 17beta-estradiol depends on ubiquitin-proteasome degradation of PPAR-gamma mediated by NEDD4-1. Protein Cell 2013; 4: 310–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moore RL, Dai Y, Faller DV . Sirtuin 1 (SIRT1) and steroid hormone receptor activity in cancer. J Endocrinol 2012; 213: 37–48.

    Article  CAS  PubMed  Google Scholar 

  56. Yang S, Jia Y, Liu X, Winters C, Wang X, Zhang Y et al. Systematic dissection of the mechanisms underlying progesterone receptor downregulation in endometrial cancer. Oncotarget 2014; 5: 9783–9797.

    PubMed  PubMed Central  Google Scholar 

  57. Hwang C, Giri VN, Wilkinson JC, Wright CW, Wilkinson AS, Cooney KA et al. EZH2 regulates the transcription of estrogen-responsive genes through association with REA, an estrogen receptor corepressor. Breast Caner Res Treat 2008; 107: 235–242.

    Article  CAS  Google Scholar 

  58. Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A . Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 2013; 97: 69–80.

    Article  CAS  PubMed  Google Scholar 

  59. Margueron R, Reinberg D . The polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Di CL, Helin K . Transcriptional regulation by polycomb group proteins. Nat Struct Mol Biol 2013; 20: 1147–1155.

    Article  CAS  Google Scholar 

  61. Simon JA, Kingston RE . Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol 2009; 10: 697–708.

    Article  CAS  PubMed  Google Scholar 

  62. Crowley SK, Girdler SS . Neurosteroid, GABAergic and hypothalamic pituitary adrenal (HPA) axis regulation: what is the current state of knowledge in humans? Psychopharmacology 2014; 231: 3619–3634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saha S, Hu Y, Martin SC, Bandyopadhyay S, Russek SJ, Farb DH . Polycomblike protein PHF1b: a transcriptional sensor for GABA receptor activity. BMC Pharmacol Toxicol 2013; 14: 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Epperson CN, Haga K, Mason GF, Sellers E, Gueorguieva R, Zhang W et al. Cortical γ-aminobutyric acid levels across the menstrual cycle in healthy women and those with premenstrual dysphoric disorder: a proton magnetic resonance spectroscopy study. Arch Gen Psychiatry 2002; 59: 851–858.

    Article  CAS  PubMed  Google Scholar 

  65. Smith MJ, Adams LF, Schmidt PJ, Rubinow DR, Wassermann EM . Abnormal luteal phase excitability of the motor cortex in women with premenstrual syndrome. Biol Psychiatry 2003; 54: 757–762.

    Article  CAS  PubMed  Google Scholar 

  66. Schiller CE, Schmidt PJ, Rubinow DR . Allopregnanolone as a mediator of affective switching in reproductive mood disorders. Psychopharmacology 2014; 231: 3557–3567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hunter RG, McCarthy KJ, Milne TA, Pfaff DW, McEwen BS . Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc Natl Acad Sci USA 2009; 106: 20912–20917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peter CJ, Akbarian S . Balancing histone methylation activities in psychiatric disorders. Trends Mol Med 2011; 17: 372–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Machado-Vieira R, Ibrahim L, Zarate CA Jr . Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci Ther 2011; 17: 699–704.

    Article  CAS  PubMed  Google Scholar 

  70. Ernst C, Chen ES, Turecki G . Histone methylation and decreased expression of TrkB.T1 in orbital frontal cortex of suicide completers. Mol Psychiatry 2009; 14: 830–832.

    Article  CAS  PubMed  Google Scholar 

  71. Kishi T, Yoshimura R, Kitajima T, Okochi T, Okumura T, Tsunoka T et al. SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 2010; 126: 167–173.

    Article  CAS  PubMed  Google Scholar 

  72. Kenworthy CA, Sengupta A, Luz SM, Ver Hoeve ES, Meda K, Bhatnagar S et al. Social defeat induces changes in histone acetylation and expression of histone modifying enzymes in the ventral hippocampus, prefrontal cortex, and dorsal raphe nucleus. Neuroscience 2014; 264: 88–98.

    Article  CAS  PubMed  Google Scholar 

  73. Renthal W, Kumar A, Xiao G, Wilkinson M, Covington HE III, Maze I et al. Genome-wide analysis of chromatin regulation by cocaine reveals a role for sirtuins. Neuron 2009; 62: 335–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ . Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9: 519–525.

    Article  CAS  PubMed  Google Scholar 

  75. Etchegaray JP, Yang X, DeBruyne JP, Peters AH, Weaver DR, Jenuwein T et al. The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 2006; 281: 21209–21215.

    Article  CAS  PubMed  Google Scholar 

  76. Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F et al. l-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci USA 2013; 110: 4804–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Qi C, Liu S, Qin R, Zhang Y, Wang G, Shang Y et al. Coordinated regulation of dendrite arborization by epigenetic factors CDYL and EZH2. J Neurosci 2014; 34: 4494–4508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pereira JD, Sansom SN, Smith J, Dobenecker MW, Tarakhovsky A, Livesey FJ . Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci USA 2010; 107: 15957–15962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yan W, Fang Z, Yang Q, Dong H, Lu Y, Lei C et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain. J Cereb Blood Flow Metab 2013; 33: 396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Libert S, Pointer K, Bell EL, Das A, Cohen DE, Asara JM et al. SIRT1 activates MAO-A in the brain to mediate anxiety and exploratory drive. Cell 2011; 147: 1459–1472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. CONVERGE Consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 2015; 523: 588–591.

    Article  CAS  PubMed Central  Google Scholar 

  82. Licinio J, Wong ML . The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 1999; 4: 317–327.

    Article  CAS  PubMed  Google Scholar 

  83. Gold PW . The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 2015; 20: 32–47.

    Article  CAS  PubMed  Google Scholar 

  84. Miller AH, Raison CL . The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 2016; 16: 22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bertone-Johnson ER, Ronnenberg AG, Houghton SC, Nobles C, Zagarins SE, Takashima-Uebelhoer BB et al. Association of inflammation markers with menstrual symptom severity and premenstrual syndrome in young women. Hum Reprod 2014; 29: 1987–1994.

    Article  CAS  PubMed  Google Scholar 

  86. Gold EB, Wells C, Rasor MO . The association of inflammation with premenstrual symptoms. J Womens Health 2016; 25: 865–874.

    Article  Google Scholar 

  87. Huo L, Straub RE, Schmidt PJ, Shi K, Vakkalanka R, Weinberger DR et al. Risk for premenstrual dysphoric disorder is associated with genetic variation in ESR1, the estrogen receptor alpha gene. Biol Psychiatry 2007; 62: 925–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tseng RC, Wang YC . SIRT1 (sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae). Atlas Genet Cytogenet Oncol Haematol 2010; 14: 1152–1156.

    Google Scholar 

  89. Roth M, Chen WY . Sorting out functions of sirtuins in cancer. Oncogene 2014; 33: 1609–1620.

    Article  CAS  PubMed  Google Scholar 

  90. Li X, Isono K, Yamada D, Endo TA, Endoh M, Shinga J et al. Mammalian polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate polycomb activity both at the Hox gene cluster and at Cdkn2a genes. Mol Cell Biol 2011; 31: 351–364.

    Article  CAS  PubMed  Google Scholar 

  91. Kininis M, Kraus WL . A global view of transcriptional regulation by nuclear receptors: gene expression, factor localization, and DNA sequence analysis. Nucl Recept Signal 2008; 6: e005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hah N, Kraus WL . Hormone-regulated transcriptomes: lessons learned from estrogen signaling pathways in breast cancer cells. Mol Cell Endocrinol 2014; 382: 652–664.

    Article  CAS  PubMed  Google Scholar 

  93. Villablanca AC, Lewis KA, Rutledge JC . Time- and dose-dependent differential upregulation of three genes by 17 beta-estradiol in endothelial cells. J Appl Physiol (1985) 2002; 92: 1064–1073.

    Article  CAS  Google Scholar 

  94. Brinton RD, Thompson RF, Foy MR, Baudry M, Wang J, Finch CE et al. Progesterone receptors: form and function in brain. Front Neuroendocrinol 2008; 29: 313–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bali N, Arimoto JM, Iwata N, Lin SW, Zhao L, Brinton RD et al. Differential responses of progesterone receptor membrane component-1 (Pgrmc1) and the classical progesterone receptor (Pgr) to 17β-estradiol and progesterone in hippocampal subregions that support synaptic remodeling and neurogenesis. Endocrinology 2012; 153: 759–769.

    Article  CAS  PubMed  Google Scholar 

  96. Mani SK, Blaustein JD . Neural progestin receptors and female sexual behavior. Neuroendocrinology 2012; 96: 152–161.

    Article  CAS  PubMed  Google Scholar 

  97. Thomas P, Pang Y . Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells. Neuroendocrinology 2012; 96: 162–171.

    Article  CAS  PubMed  Google Scholar 

  98. Peluso JJ, DeCerbo J, Lodde V . Evidence for a genomic mechanism of action for progesterone receptor membrane component-1. Steroids 2012; 77: 1007–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thomas P . Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front Neuroendocrinol 2008; 29: 292–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schumacher M, Mattern C, Ghoumari A, Oudinet JP, Liere P, Labombarda F et al. Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog Neurobiol 2014; 113: 6–39.

    Article  CAS  PubMed  Google Scholar 

  101. Tie F, Furuyama T, Prasad-Sinha J, Jane E, Harte PJ . The Drosophila Polycomb Group proteins ESC and E(Z) are present in a complex containing the histone-binding protein p55 and the histone deacetylase RPD3. Development 2001; 128: 275–286.

    CAS  PubMed  Google Scholar 

  102. Van der Vlag J, Otte AP . Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nat Genet 1999; 23: 474–478.

    Article  CAS  PubMed  Google Scholar 

  103. Kendler KS, Silberg JL, Neale MC, Kessler RC, Heath AC, Eaves LJ . Genetic and environmental factors in the aetiology of menstrual, premenstrual and neurotic symptoms: a population-based twin study. Psychol Med 1992; 22: 85–100.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Cheryl Marietta, Longina Akhtar, Bani Mukhopadhyay and Elisa Moore of NIAAA for their technical assistance and expertise in conducting this study. We also thank Karla Thompson and Linda Schenkel of NIMH for their clinical support and data management, and Catherine Roca who initiated the PMDD genetics project and was responsible for collecting many of the samples employed in the replication sample for this study. Finally, we thank Dr. Shailaja Mani of Baylor College of Medicine for her guidance and consultation on this project. This work was written as part of Peter J. Schmidt’s official duties as a Government employee. This research was supported by the Intramural Research Program of the NIMH and NIAAA NIH; NIMH Protocols NCT00001259 and NCT00001322; and NIMH Project # MH002865; NIAAA Project # AA000301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Schmidt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, N., Hoffman, J., Schuebel, K. et al. The ESC/E(Z) complex, an effector of response to ovarian steroids, manifests an intrinsic difference in cells from women with premenstrual dysphoric disorder. Mol Psychiatry 22, 1172–1184 (2017). https://doi.org/10.1038/mp.2016.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2016.229

This article is cited by

Search

Quick links