Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Measuring the onset of locking in the Peru–Chile trench with GPS and acoustic measurements

Abstract

The subduction zone off the west coast of South America marks the convergence of the oceanic Nazca plate and the continental South America plate. Nazca–South America convergence over the past 23 million years has created the 6-km-deep Peru–Chile trench, 150 km offshore. High pressure between the plates creates a locked zone, leading to deformation of the overriding plate. The surface area of this locked zone is thought to control the magnitude of co-seismic release and is limited by pressure, temperature, sediment type and fluid content1. Here we present seafloor deformation data from the submerged South America plate obtained from a combination of Global Positioning System (GPS) receivers and acoustic transponders. We estimate that the measured horizontal surface motion perpendicular to the trench is consistent with a model having no slip along the thrust fault between 2 and 40 km depth. A tsunami in 1996, 200 km north of our site, was interpreted as being the result of an anomalously shallow interplate earthquake2. Seismic coupling at shallow depths, such as we observe, may explain why co-seismic events in the Peruvian subduction zone create large tsunamis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The GPS–acoustic approach to measure seafloor motion.
Figure 2: Bathymetric map of seafloor geodesy sites off the coast of Peru.
Figure 3: Models of surface deformation and plate organization.

Similar content being viewed by others

References

  1. Tichelaar, B. W. & Ruff, L. J. Depth of seismic coupling along subduction zones. J. Geophys. Res. 98, 2017–2037 (1993)

    Article  ADS  Google Scholar 

  2. Satake, K. & Tanioka, Y. Sources of tsunami and tsunamigenic earthquakes in subduction zones. Pure Appl. Geophys. 154, 467–483 (1999)

    Article  ADS  Google Scholar 

  3. Cahill, T. & Isacks, I. Seismicity and shape of the subducted Nazca Plate. J. Geophys. Res. 97, 17503–17529 (1992)

    Article  ADS  Google Scholar 

  4. Gutscher, M. Andean subduction styles and their effect on thermal structure and interplate coupling. J. S. Am. Earth Sci. 15, 3–10 (2002)

    Article  Google Scholar 

  5. Moore, J. C. & Saffer, D. Updip limit of the seismogenic zone beneath the accretionary prism of southwest Japan: An effect of diagenetic to low-grade metamorphic processes and increasing effective stress. Geology 29, 183–186 (2001)

    Article  ADS  CAS  Google Scholar 

  6. Oleskevich, D. A., Hyndman, R. D. & Wang, K. The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, South Alaska, SW Japan, and Chile. J. Geophys. Res. 104, 14965–14991 (1999)

    Article  ADS  Google Scholar 

  7. Norabuena, E., Dixon, T. H., Stein, S. & Harrison, C. G. A. Decelerating Nazca–South America and Nazca–Pacific Plate motions. Geophys. Res. Lett. 26, 3405–3408 (1999)

    Article  ADS  Google Scholar 

  8. Norabuena, E. et al. Space geodetic observations of Nazca–South America convergence across the central Andes. Science 279, 358–362 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Newman, A. V. et al. Along-strike variability in the seismogenic zone below Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 29, 38–41 (2002)

    Google Scholar 

  10. Chadwell, C. D. & Bock, Y. Direct estimation of absolute precipitable water in oceanic regions by GPS tracking of a coastal buoy. Geophys. Res. Lett. 28, 3701–3704 (2001)

    Article  ADS  Google Scholar 

  11. Spiess, F. N. et al. Precise GPS/acoustic positioning of seafloor reference points for tectonic studies. Physics Earth Planet. Inter. 108, 101–112 (1998)

    Article  ADS  Google Scholar 

  12. Webb, F. H. & Zumberge, J. F. An introduction to GIPSY/OASIS-II (JPL Publication D-11088, Jet Propulsion Lab., Pasadena, California, 1997)

    Google Scholar 

  13. Chadwell, C. D. Shipboard towers for Global Positioning System antennas. Ocean Eng. 30, 1467–1487 (2003)

    Article  Google Scholar 

  14. Gomberg, J. & Ellis, M. Topography and tectonics of the central New Madrid seismic zone: Results of numerical experiments using a three-dimensional boundary-element program. J. Geophys. Res. 99, 20299–20310 (1994)

    Article  ADS  Google Scholar 

  15. Krabbenhöft, A., Bialas, J., Kopp, H., Kukowski, N. & Hübscher, C. Crustal structure of the Peruvian continental margin from wide-angle seismic studies. Geophys. J. Int. 159, 749–764 (2004)

    Article  ADS  Google Scholar 

  16. Hampel, A., Kukowski, N., Bialas, J., Huebscher, C. & Heinbockel, R. Ridge subduction at an erosive margin: The collision of the Nazca Ridge in southern Peru. J. Geophys. Res. 109, B02101, doi:10.1029/2003JB002593 (2004)

    Article  ADS  Google Scholar 

  17. Sella, G., Dixon, T. & Mao, A. REVEL: A model for recent plate velocites from space geodesy. J. Geophys. Res. 107, 2081, doi:10.1029/2000JB00033 (2002)

    Article  ADS  Google Scholar 

  18. Angermann, D. & Klotz, J. R. Space geodetic estimation of the Nazca–South America Euler vector. Earth Planet. Sci. Lett. 171, 329–334 (1999)

    Article  ADS  CAS  Google Scholar 

  19. DeMets, C., Gordon, R., Argus, D. & Stein, S. Effect of recent revision to the geomagnetic reversal time scale on estimates of current plate motion. Geophys. Res. Lett. 21, 2191–2194 (1994)

    Article  ADS  Google Scholar 

  20. Larson, K. M., Freymueller, J. T. & Philipsen, S. Global plate velocities from the Global Positioning System. J. Geophys. Res. 102, 9961–9981 (1997)

    Article  ADS  Google Scholar 

  21. Wang, K. & Dixon, T. “Coupling” semantics and science in earthquake research. Eos 85, 180 (2004)

    Article  ADS  Google Scholar 

  22. Tichelaar, B. & Ruff, L. Seismic coupling along the Chilean subduction zone. J. Geophys. Res. 96, 11997–12022 (1991)

    Article  ADS  Google Scholar 

  23. Bevis, M., Smalley, R. Jr, Herring, T., Godoy, J. & Galban, F. Crustal motion north and south of the Arica Deflection: Comparing recent geodetic results from the Central Andes. Geochem. Geophys. Geosyst. 1, 1999GC000011 (1999)

  24. Schweller, W. J., Kulm, L. D. & Prince, R. A. in Nazca Plate: Crustal Formation and Andean Convergence (eds Kulm, L. D., Dymond, J., Dasch, E. J., Hussong, D. M. & Roderick, R.) 323–349 (Mem. Geol. Soc. Am. 154, Geological Society of America, Boulder, Colorado, 1981)

    Book  Google Scholar 

  25. Altimini, A., Sillard, P. & Boucher, C. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res. 107, 2214, doi:10.1029.2001JB000561 (2002)

    ADS  Google Scholar 

  26. Smith, W. H. F. & Sandwell, D. T. Global seafloor topography from satellite altimetry and ship depth soundings. Science 277, 1957–1962 (1997)

    Google Scholar 

Download references

Acknowledgements

We thank M. Bevis for comments and suggestions; R. Zimmerman, D. Rimington and D. Price for engineering support; and the Captain and crew of the R/V Roger Revelle. We thank the Instituto Geofisico Del Peru for operating the land GPS stations and the Instituto Del Mar Del Peru, Direccion de Higrografia y Navagacion, for support at sea. This work was supported by the Marine Geology and Geophysics Program of the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. David Chadwell.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Data

This file contains information on malaria morbidity (part A) and populations at risk (part B). (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagnon, K., Chadwell, C. & Norabuena, E. Measuring the onset of locking in the Peru–Chile trench with GPS and acoustic measurements. Nature 434, 205–208 (2005). https://doi.org/10.1038/nature03412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03412

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing