Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

mPins modulates PSD-95 and SAP102 trafficking and influences NMDA receptor surface expression

An Erratum to this article was published on 02 December 2005

Abstract

Appropriate trafficking and targeting of glutamate receptors (GluRs) to the postsynaptic density is crucial for synaptic function. We show that mPins (mammalian homologue of Drosophila melanogaster partner of inscuteable) interacts with SAP102 and PSD-95 (two PDZ proteins present in neurons), and functions in the formation of the NMDAR–MAGUK (N-methyl-D-aspartate receptor–membrane-associated guanylate kinase) complex. mPins enhances trafficking of SAP102 and NMDARs to the plasma membrane in neurons. Expression of dominant–negative constructs and short-interfering RNA (siRNA)-mediated knockdown of mPins decreases SAP102 in dendrites and modifies surface expression of NMDARs. mPins changes the number and morphology of dendritic spines and these effects depend on its Gαi interaction domain, thus implicating G-protein signalling in the regulation of postsynaptic structure and trafficking of GluRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mPins interacts with SAP102 and MAGUK proteins.
Figure 2: NMDAR and SAP102 coimmunoprecipitate with mPins in brain.
Figure 3: Interactions of mPins and SAP102 in heterologous cells.
Figure 4: NR2B is associated with SAP102 and mPins early in the secretory pathway.
Figure 5: Postsynaptic targeting of mPins and SAP102 in hippocampal neurons.
Figure 6: Targeting of mPins mutants in hippocampal neurons.
Figure 7: siRNAs knock down mPins expression and reduce surface expression of Flag–NR2B.
Figure 8: The Gαi–mPins complex functions in trafficking of NR2B in hippocampal neurons.

Similar content being viewed by others

References

  1. Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nature Rev. Neurosci. 5, 771–781 (2004).

    Article  CAS  Google Scholar 

  2. Montgomery, J. M., Zamorano, P. L. & Garner, C. C. MAGUKs in synapse assembly and function: an emerging view. Cell Mol. Life Sci. 61, 911–929 (2004).

    Article  CAS  Google Scholar 

  3. van Zundert, B., Yoshii, A. & Constantine-Paton, M. Receptor compartmentalization and trafficking at glutamate synapses: a developmental proposal. Trends Neurosci. 27, 428–437 (2004).

    Article  CAS  Google Scholar 

  4. Wenthold, R. J. et al. Trafficking of NMDA receptors. Annu. Rev. Pharmacol. Toxicol. 43, 335–358 (2003).

    Article  CAS  Google Scholar 

  5. Sans, N. et al. Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J. Neurosci. 21, 7506–7516 (2001).

    Article  CAS  Google Scholar 

  6. Sans, N. et al. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nature Cell Biol. 5, 520–530 (2003).

    Article  CAS  Google Scholar 

  7. Washbourne, P., Liu, X. B., Jones, E. G. & McAllister, A. K. Cycling of NMDA receptors during trafficking in neurons before synapse formation. J. Neurosci. 24, 8253–8264 (2004).

    Article  CAS  Google Scholar 

  8. Chung, H. J., Huang, Y. H., Lau, L.F. & Huganir, R.L. Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J. Neurosci. 24, 10248–59 (2004).

    Article  CAS  Google Scholar 

  9. Sans, N. et al. A developmental change in NMDA receptor-associated proteins at hippocampal synapses. J. Neurosci. 20, 1260–1271 (2000).

    Article  CAS  Google Scholar 

  10. Sato, M., Blumer, J. B., Simon, V. & Lanier, S. M. Accessory proteins for G-proteins: partners in signaling. Annu. Rev. Pharmacol. Toxicol. 46, 151–187 (2006).

    Article  CAS  Google Scholar 

  11. Blumer, J. B., Cismowski, M. J., Sato, M. & Lanier, S. M. AGS proteins: receptor-independent activators of G-protein signaling. Trends Pharmacol. Sci. 26, 470–476 (2005).

    CAS  PubMed  Google Scholar 

  12. Willard, F. S., Kimple, R. J. & Siderovski, D. P. Return of the GDI: the GoLoco motif in cell division. Annu. Rev. Biochem. 73, 925–951 (2004).

    Article  CAS  Google Scholar 

  13. Blatch, G. L. & Lassle, M. The tetratricopeptide repeat: a structural motif mediating protein–protein interactions. Bioessays 21, 932–939 (1999).

    Article  CAS  Google Scholar 

  14. Du, Q., Stukenberg, P. T. & Macara, I. G. A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nature Cell Biol. 3, 1069–1075 (2001).

    Article  CAS  Google Scholar 

  15. Marty, C., Browning, D. D & Ye, R. D. Identification of tetratricopeptide repeat 1 as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras. Mol. Cell. Biol. 23, 3847–3858 (2003).

    Article  CAS  Google Scholar 

  16. Blumer, J. B. et al. Interaction of activator of G-protein signaling 3 (AGS3) with LKB1, a serine/threonine kinase involved in cell polarity and cell cycle progression: phosphorylation of the G-protein regulatory (GPR) motif as a regulatory mechanism for the interaction of GPR motifs with Giα. J. Biol. Chem. 278, 23217–23220 (2003).

    Article  CAS  Google Scholar 

  17. Bellaiche, Y. et al. The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell 106, 355–366 (2001).

    Article  CAS  Google Scholar 

  18. Blumer, J. B., Chandler, L. J. & Lanier, S. M. Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J. Biol. Chem. 277, 15897–15903 (2002).

    Article  CAS  Google Scholar 

  19. Pizzinat, N., Takesono, A. & Lanier, S. M. Identification of a truncated form of the G-protein regulator AGS3 in heart that lacks the tetratricopeptide repeat domains. J. Biol. Chem. 276, 16601–16610 (2001).

    Article  CAS  Google Scholar 

  20. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004).

    Article  CAS  Google Scholar 

  21. El-Husseini, A. E. et al. Ion channel clustering by membrane-associated guanylate kinases. Differential regulation by N-terminal lipid and metal binding motifs. J. Biol. Chem. 275, 23904–23910 (2000).

    Article  CAS  Google Scholar 

  22. Roche, K. W. et al. Molecular determinants of NMDA receptor internalization. Nature Neurosci. 4, 794–802 (2001).

    Article  CAS  Google Scholar 

  23. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell. Biol. 136, 669–678 (1997).

    Article  CAS  Google Scholar 

  24. McIlhinney, R. A. J. et al. Assembly, intracellular targeting and cell surface expression of the human N-methyl-D-aspartate receptor subunits NR1a and NR2A in transfected cells. Neuropharmacology 37, 1355–1367 (1998).

    Article  CAS  Google Scholar 

  25. Pak, D. T. et al. Regulation of dendritic spine morphology by SPAR, a PSD-95-associated RapGAP. Neuron 31, 289–303 (2001).

    Article  CAS  Google Scholar 

  26. Fujimuro, M., Sawada, H. & Yokosawa, H. Production and characterisation of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Letts. 349, 173–180 (1994).

    Article  CAS  Google Scholar 

  27. Bernard, M. L. et al. Selective interaction of AGS3 with G-proteins and the influence of AGS3 on the activation state of G-proteins. J. Biol. Chem. 276, 1585–1593 (2001).

    Article  CAS  Google Scholar 

  28. Mochizuki, N., Cho, G., Wen, B. & Insel, P. A. Identification and cDNA cloning of a novel human mosaic protein, LGN, based on interaction with Gαi2 . Gene 181, 39–43 (1996).

    Article  CAS  Google Scholar 

  29. Bowers, M. S. et al. Activator of G protein signaling 3: a gatekeeper of cocaine sensitization and drug seeking. Neuron 42, 269–281 (2004).

    Article  CAS  Google Scholar 

  30. Zhu, J. J. et al. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443–455 (2002).

    Article  CAS  Google Scholar 

  31. Imamura, Y. et al. Possible involvement of Rap1 and Ras in glutamatergic synaptic transmission. Neuroreport 14, 1203–1207 (2003).

    Article  CAS  Google Scholar 

  32. Guo, W. et al. Group I metabotropic glutamate receptor NMDA receptor coupling and signaling cascade mediate spinal dorsal horn NMDA receptor 2B tyrosine phosphorylation associated with inflammatory hyperalgesia. J. Neurosci. 24, 9161–9173 (2004).

    Article  CAS  Google Scholar 

  33. Snyder, E. M. et al. Internalization of ionotropic glutamate receptors in response to mGluR activation. Nature Neurosci. 4, 1079–1085 (2001).

    Article  CAS  Google Scholar 

  34. Takesono, A., et al. Receptor-independent activators of heterotrimeric G-protein signaling. J. Biol. Chem. 274, 33203–33205 (1999).

    Article  Google Scholar 

  35. Peterson, Y. K. et al. Stabilization of the GDP-bound conformation of Gαi by a peptide derived from the G-protein regulatory motif of AGS3. J. Biol. Chem. 275, 33193–33196 (2000).

    Article  CAS  Google Scholar 

  36. Wu, H. et al. Intramolecular interactions regulate SAP97 binding to GKAP. EMBO J. 19, 5740–5751 (2000).

    Article  CAS  Google Scholar 

  37. Wang, Y. et al. AMPA receptor-mediated regulation of a Gi-protein in cortical neurons. Nature 389, 502–504 (1997).

    Article  CAS  Google Scholar 

  38. Standley, S. et al. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28, 887–898 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.C. Garner for providing the SAP102 cDNA, D. Bredt for the PSD-95 and PSD-95 C3,5S GFP-tagged constructs, A. El-Husseini for the GKAP construct, D.B. Arnold for the Kv1.4 construct, A. Stephenson for the Flag-tagged NR2B construct, K.W. Roche for the Tac constructs, and J. Hell for the SAP102 antibody. We thank K. Prybylowski and L.A. Dunbar for discussion and helpful suggestions. We also thank M. Montcouquiol and S. M. Lanier for valuable comments on the manuscript. Animals were handled in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. Supported by the Intramural Research Program of the National Institute on Deafness and Other Communication Disorders (NIDCD), NIH grant GM070902 to I.M., and NIH grant F32MH65092 to J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Sans.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 613 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sans, N., Wang, P., Du, Q. et al. mPins modulates PSD-95 and SAP102 trafficking and influences NMDA receptor surface expression. Nat Cell Biol 7, 1179–1190 (2005). https://doi.org/10.1038/ncb1325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1325

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing