Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia

An Erratum to this article was published on 01 May 2010

This article has been updated

Abstract

In mammals, motile cilia cover many organs, such as fallopian tubes, respiratory tracts and brain ventricles. The development and function of these organs critically depend on efficient directional fluid flow ensured by the alignment of ciliary beating. To identify the mechanisms involved in this process, we analysed motile cilia of mouse brain ventricles, using biophysical and molecular approaches. Our results highlight an original orientation mechanism for ependymal cilia whereby basal bodies first dock apically with random orientations, and then reorient in a common direction through a coupling between hydrodynamic forces and the planar cell polarity (PCP) protein Vangl2, within a limited time-frame. This identifies a direct link between external hydrodynamic cues and intracellular PCP signalling. Our findings extend known PCP mechanisms by integrating hydrodynamic forces as long-range polarity signals, argue for a possible sensory role of ependymal cilia, and will be of interest for the study of fluid flow-mediated morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Progressive orientation of ependymal cilia during development.
Figure 2: External fluid flow applied over ependymal cells during maturation orients subsequent ciliary beatings in its direction.
Figure 3: Vangl2 localizes asymmetrically at apical membrane and along cilia of multiciliated ependymal cells.
Figure 4: Vangl2 is required for cilia orientation response to flow in vitro.
Figure 5: Vangl2 is required for in vivo cilia orientation.
Figure 6: Kif3aCKO ciliary mutant cells show proper apical asymmetric localization of Vangl2 but random orientation of basal bodies.
Figure 7: Motile cilia alignment reveals a new mechanism that couples hydrodynamic forces and PCP signalling.

Similar content being viewed by others

Change history

  • 26 March 2010

    In the version of this article initially published online, there was an error in the numbering of author equal contribution. This error has been corrected in both the HTML and PDF versions of the letter.

References

  1. Machemer, H. Ciliary activity and the origin of metachrony in Paramecium: effects of increased viscosity. J. Exp. Biol. 57, 239–259 (1972).

    CAS  PubMed  Google Scholar 

  2. Hirokawa, N., Tanaka, Y., Okada, Y. & Takeda, S. Nodal flow and the generation of left-right asymmetry. Cell 125, 33–45 (2006).

    Article  CAS  Google Scholar 

  3. Ibanez-Tallon, I., Heintz, N. & Omran, H. To beat or not to beat: roles of cilia in development and disease. Hum. Mol. Genet. 12 Spec No 1, R27–R35 (2003).

  4. Banizs, B. et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132, 5329–5339 (2005).

    Article  CAS  Google Scholar 

  5. Paltieli, Y. et al. High progesterone levels and ciliary dysfunction — a possible cause of ectopic pregnancy. J. Assist. Reprod. Genet. 17, 103–106 (2000).

    Article  CAS  Google Scholar 

  6. Ibanez-Tallon, I. et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 13, 2133–2141 (2004).

    Article  CAS  Google Scholar 

  7. Lechtreck, K. F., Delmotte, P., Robinson, M. L., Sanderson, M. J. & Witman, G. B. Mutations in Hydin impair ciliary motility in mice. J. Cell Biol. 180, 633–643 (2008).

    Article  CAS  Google Scholar 

  8. Sawamoto, K. et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629–632 (2006).

    Article  CAS  Google Scholar 

  9. Guirao, B. & Joanny, J. F. Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. Biophys. J. 92, 1900–1917 (2007).

    Article  CAS  Google Scholar 

  10. Marshall, W. F. & Kintner, C. Cilia orientation and the fluid mechanics of development. Curr. Opin. Cell Biol. 20, 48–52 (2008).

    Article  CAS  Google Scholar 

  11. Tamm, S. L., Sonneborn, T. M. & Dippell, R. V. The role of cortical orientation in the control of the direction of ciliary beat in Paramecium. J. Cell Biol. 64, 98–112 (1975).

    Article  CAS  Google Scholar 

  12. Iftode, F. & Fleury-Aubusson, A. Structural inheritance in Paramecium: ultrastructural evidence for basal body and associated rootlets polarity transmission through binary fission. Biol. Cell 95, 39–51 (2003).

    Article  Google Scholar 

  13. Boisvieux-Ulrich, E., Sandoz, D. & Allart, J.-P. Determination of ciliary polarity precedes differentiation in the epithelial cells of quail oviduct. Biol. Cell 72, 3–14 (1991).

    Article  CAS  Google Scholar 

  14. Mitchell, B., Jacobs, R., Li, J., Chien, S. & Kintner, C. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 447, 97–101 (2007).

    Article  CAS  Google Scholar 

  15. Klein, T. J. & Mlodzik, M. Planar cell polarization: an emerging model points in the right direction. Annu. Rev. Cell Dev. Biol. 21, 155–176 (2005).

    Article  CAS  Google Scholar 

  16. Park, T. J., Mitchell, B. J., Abitua, P. B., Kintner, C. & Wallingford, J. B. Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genet. 40, 871–879 (2008).

    Article  CAS  Google Scholar 

  17. Mitchell, B. et al. The PCP pathway instructs the planar orientation of ciliated cells in the Xenopus larval skin. Curr. Biol. 19, 924–929 (2009).

    Article  CAS  Google Scholar 

  18. Montcouquiol, M. et al. Identification of Vangl2 and Scrb1 as planar polarity genes in mammals. Nature 423, 173–177 (2003).

    Article  CAS  Google Scholar 

  19. Devenport, D. & Fuchs, E. Planar polarization in embryonic epidermis orchestrates global asymmetric morphogenesis of hair follicles. Nature Cell Biol. 10, 1257–1268 (2008).

    Article  CAS  Google Scholar 

  20. Wang, Y. & Nathans, J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 134, 647–658 (2007).

    Article  CAS  Google Scholar 

  21. Wu, J. & Mlodzik, M. A quest for the mechanism regulating global planar cell polarity of tissues. Trends Cell Biol. 19, 295–305 (2009).

    Article  Google Scholar 

  22. Spassky, N. et al. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25, 10–18 (2005).

    Article  CAS  Google Scholar 

  23. Frisch, D. & Farbman, A. I. Development of order during ciliogenesis. Anat. Rec. 162, 221–232 (1968).

    Article  CAS  Google Scholar 

  24. El Zein, L. et al. RFX3 governs growth and beating efficiency of motile cilia in mouse and controls the expression of genes involved in human ciliopathies. J. Cell Sci. 122, 3180–3189 (2009).

    Article  CAS  Google Scholar 

  25. Calaora, V., Chazal, G., Nielsen, P. J., Rougon, G. & Moreau, H. mCD24 expression in the developing mouse brain and in zones of secondary neurogenesis in the adult. Neuroscience 73, 581–594 (1996).

    Article  CAS  Google Scholar 

  26. Afzelius, B. A. The immotile-cilia syndrome and other ciliary diseases. Int. Rev. Exp. Pathol. 19, 1–43 (1979).

    CAS  PubMed  Google Scholar 

  27. Rautiainen, M., Collan, Y., Nuutinen, J. & Afzelius, B. A. Ciliary orientation in the “immotile cilia” syndrome. Eur. Arch. Otorhinolaryngol. 247, 100–103 (1990).

    Article  CAS  Google Scholar 

  28. Torban, E. et al. Tissue, cellular and sub-cellular localization of the Vangl2 protein during embryonic development: effect of the Lp mutation. Gene Expr. Patterns 7, 346–354 (2007).

    Article  CAS  Google Scholar 

  29. Boutin, C., Diestel, S., Desoeuvre, A., Tiveron, M. C. & Cremer, H. Efficient in vivo electroporation of the postnatal rodent forebrain. PLoS ONE 3, e1883 (2008).

    Article  Google Scholar 

  30. Boutin, C., Schmitz, B., Cremer, H. & Diestel, S. NCAM expression induces neurogenesis in vivo. Eur. J. Neurosci. 30, 1209–1218 (2009).

    Article  Google Scholar 

  31. Merkle, F. T., Tramontin, A. D., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc. Natl Acad. Sci. USA 101, 17528–17532 (2004).

    Article  CAS  Google Scholar 

  32. Montcouquiol, M. et al. Asymmetric localization of Vangl2 and Fz3 indicate novel mechanisms for planar cell polarity in mammals. J. Neurosci. 26, 5265–5275 (2006).

    Article  CAS  Google Scholar 

  33. van Abeelen, J. H. & Raven, S. M. Enlarged ventricles in the cerebrum of loop-tail mice. Experientia 24, 191–192 (1968).

    Article  CAS  Google Scholar 

  34. Vandenberg, A. L. & Sassoon, D. A. Non-canonical Wnt signaling regulates cell polarity in female reproductive tract development via van gogh-like 2. Development 136, 1559–1570 (2009).

    Article  CAS  Google Scholar 

  35. Spassky, N. et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev. Biol. 317, 246–259 (2008).

    Article  CAS  Google Scholar 

  36. Haycraft, C. J. et al. Intraflagellar transport is essential for endochondral bone formation. Development 134, 307–316 (2007).

    Article  CAS  Google Scholar 

  37. Redzic, Z. B., Preston, J. E., Duncan, J. A., Chodobski, A. & Szmydynger-Chodobska, J. The choroid plexus-cerebrospinal fluid system: from development to aging. Curr. Top. Dev. Biol. 71, 1–52 (2005).

    Article  CAS  Google Scholar 

  38. Miyan, J. A., Nabiyouni, M. & Zendah, M. Development of the brain: a vital role for cerebrospinal fluid. Can. J. Physiol. Pharmacol. 81, 317–328 (2003).

    Article  CAS  Google Scholar 

  39. Wodarczyk, C. et al. A novel mouse model reveals that polycystin-1 deficiency in ependyma and choroid plexus results in dysfunctional cilia and hydrocephalus. PLoS One 4, e7137 (2009).

    Article  Google Scholar 

  40. Torban, E., Wang, H. J., Groulx, N. & Gros, P. Independent mutations in mouse Vangl2 that cause neural tube defects in looptail mice impair interaction with members of the Dishevelled family. J. Biol. Chem. 279, 52703–52713 (2004).

    Article  CAS  Google Scholar 

  41. Ross, A. J. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates. Nature Genet. 37, 1135–1140 (2005).

    Article  CAS  Google Scholar 

  42. Jones, C. et al. Ciliary proteins link basal body polarization to planar cell polarity regulation. Nature Genet. 40, 69–77 (2008).

    Article  CAS  Google Scholar 

  43. Pazour, G. J., Wilkerson, C. G. & Witman, G. B. A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. Cell Biol. 141, 979–992 (1998).

    Article  CAS  Google Scholar 

  44. May-Simera, H. L. et al. Patterns of expression of Bardet-Biedl syndrome proteins in the mammalian cochlea suggest noncentrosomal functions. J. Comp. Neurol. 514, 174–188 (2009).

    Article  CAS  Google Scholar 

  45. Kim, J. C. et al. The Bardet-Biedl protein BBS4 targets cargo to the pericentriolar region and is required for microtubule anchoring and cell cycle progression. Nature Genet. 36, 462–470 (2004).

    Article  CAS  Google Scholar 

  46. Qin, H. et al. Intraflagellar transport is required for the vectorial movement of TRPV channels in the ciliary membrane. Curr. Biol. 15, 1695–1699 (2005).

    Article  CAS  Google Scholar 

  47. Wang, Q., Pan, J. & Snell, W. J. Intraflagellar transport particles participate directly in cilium-generated signaling in Chlamydomonas. Cell 125, 549–562 (2006).

    Article  CAS  Google Scholar 

  48. Lechtreck, K. F. et al. The Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella. J. Cell Biol. 187, 1117–1132 (2009).

    Article  CAS  Google Scholar 

  49. Shah, A. S., Ben-Shahar, Y., Moninger, T. O., Kline, J. N. & Welsh, M. J. Motile cilia of human airway epithelia are chemosensory. Science 325, 1131–1134 (2009).

    Article  CAS  Google Scholar 

  50. Danilov, A. I. et al. Ultrastructural and antigenic properties of neural stem cells and their progeny in adult rat subventricular zone. Glia 57, 136–152 (2009).

    Article  Google Scholar 

  51. Genzen, J. R., Platel, J. C., Rubio, M. E. & Bordey, A. Ependymal cells along the lateral ventricle express functional P2X(7) receptors. Purinergic Signal. 5, 299–307 (2009).

    Article  CAS  Google Scholar 

  52. Carlen, M. et al. Forebrain ependymal cells are Notch-dependent and generate neuroblasts and astrocytes after stroke. Nature Neurosci. 12, 259–267 (2009).

    Article  CAS  Google Scholar 

  53. Cartwright, J. H., Piro, O. & Tuval, I. Fluid dynamics in developmental biology: moving fluids that shape ontogeny. HFSP J. 3, 77–93 (2009).

    Article  Google Scholar 

  54. Zhuo, L. et al. hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85–94 (2001).

    Article  CAS  Google Scholar 

  55. Marszalek, J. R., Ruiz-Lozano, P., Roberts, E., Chien, K. R. & Goldstein, L. S. B. Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc. Natl Acad. Sci. USA 96, 5043–5048 (1999).

    Article  CAS  Google Scholar 

  56. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nature Neurosci. 10, 1440–1448 (2007).

    Article  CAS  Google Scholar 

  57. Gosgnach, W., Messika-Zeitoun, D., Gonzalez, W., Philipe, M. & Michel, J.-B. Shear stress induces iNOS expression in cultured smooth muscle cells: role of oxidative stress. Am. J. Physiol. Cell Physiol. 279, C1880–C1888 (2000).

    Article  CAS  Google Scholar 

  58. Bailly, E., Doree, M., Nurse, P. & Bornens, M. p34cdc2 is located in both nucleus and cytoplasm; part is centrosomally associated at G2/M and enters vesicles at anaphase. EMBO J. 8, 3985–3995 (1989).

    Article  CAS  Google Scholar 

  59. Mirzadeh, Z., Merkle, F. T., Soriano-Navarro, M., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Buguin, B. Lemaire and J.-H. Codarbox for their help with the flow set-up realization. We thank Marie-Paule Muriel for excellent technical assistance and for having shared her T.E.M. background. We thank the Pitié-Salpêtrière and Cochin hospitals imaging centres. We thank B. Yoder (University of Alabama, Birmingham) and L.S. Goldstein (University of California San Diego) for providing us with Ift88fl/fl and Kif3afl/KO mice, respectively. We thank A. Alvarez-Buylla for making Ift88fl/fl mice available. We thank M. Bornens for the gift of CTR453 antibody, X. Morin for the gift of pCX plasmid and MH. Bré for the gift of TAP antibody. We also thank M. Bornens, B. Durand, J.-F. Joanny and Y. Bellaïche for discussions and reading of this manuscript. This work was supported by grants from the Agence Nationale de la Recherche (to N.S.), The International Human Frontier Science Program Organization (to N.S. and K.S.), the Fondation NRJ-Institut de France (to N.S.), the Mairie de Paris start-up Grant (to N.S.), by Fondation pour la Recherche Médicale and AXA Research Funds fellowships to A.M. and Neuropole de Recherche Francilien fellowship to J.-M.C. B.G. and A.A. were fellows of the Ministère de l'enseignement supérieur et de la recherche.

Author information

Authors and Affiliations

Authors

Contributions

A.M. designed the study, performed and analysed experiments; B.G. designed the flow set-up, designed, performed flow experiments, and analysed experiments; S.M. performed and analysed videomicroscopy experiments; L.S. performed multiciliated ependymal cell cultures; A.A. and J.-M.C. performed in vitro experiments; A.D. and C.B. performed electroporation experiments; H.C. supervised the electroporation experiments; M.M. made the Vangl2Lp/Lp mice available, provided Vangl2Lp construct and Vangl2 antibody, and contributed to many discussions; Y.H. performed India ink experiments; Y.-G.H. provided conditional Ift88 mice; Z.M. prepared conditional Ift88 samples; K.S. designed the study and supervised India ink experiments; N.S. initiated the study, designed, performed and analysed experiments, and supervised the project; N.S., A.M. and B.G. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Nathalie Spassky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4882 kb)

Supplementary Table

Supplementary Movie 1 (MOV 2528 kb)

Supplementary Information

Supplementary Movie 2 (MOV 2202 kb)

Supplementary Information

Supplementary Movie 3 (MOV 2556 kb)

Supplementary Information

Supplementary Movie 4 (MOV 2641 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2678 kb)

Supplementary Information

Supplementary Movie 6 (MOV 1184 kb)

Supplementary Information

Supplementary Movie 7 (MOV 888 kb)

Supplementary Information

Supplementary Movie 8 (MOV 905 kb)

Supplementary Information

Supplementary Movie 9 (MOV 2217 kb)

Supplementary Information

Supplementary Movie 10 (MOV 1456 kb)

Supplementary Information

Supplementary Movie 11 (MOV 1785 kb)

Supplementary Information

Supplementary Movie 12 (MOV 1203 kb)

Supplementary Information

Supplementary Movie 13 (MOV 1723 kb)

Supplementary Information

Supplementary Movie 14 (MOV 3138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guirao, B., Meunier, A., Mortaud, S. et al. Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12, 341–350 (2010). https://doi.org/10.1038/ncb2040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing