Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death

Abstract

VCP (also known as p97 or Cdc48p in yeast) is an AAA+ ATPase regulating endoplasmic reticulum–associated degradation. After high-throughput screening, we developed compounds that inhibit VCP via different mechanisms, including covalent modification of an active site cysteine and a new allosteric mechanism. Using photoaffinity labeling, structural analysis and mutagenesis, we mapped the binding site of allosteric inhibitors to a region spanning the D1 and D2 domains of adjacent protomers encompassing elements important for nucleotide-state sensing and ATP hydrolysis. These compounds induced an increased affinity for nucleotides. Interference with nucleotide turnover in individual subunits and distortion of interprotomer communication cooperated to impair VCP enzymatic activity. Chemical expansion of this allosteric class identified NMS-873, the most potent and specific VCP inhibitor described to date, which activated the unfolded protein response, interfered with autophagy and induced cancer cell death. The consistent pattern of cancer cell killing by covalent and allosteric inhibitors provided critical validation of VCP as a cancer target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: siRNA knockdown establishes the biological effects of VCP silencing.
Figure 2: NMS-859 covalently modifies VCP on the active site Cys522 and blocks ATP binding.
Figure 3: Identification of allosteric inhibitor binding sites.
Figure 4: Effect of allosteric inhibitors on the different VCP mutants.
Figure 5: Treatment with VCP inhibitors modulates biomarkers linked to cell killing.
Figure 6: Proposed model of allosteric inhibitors mechanism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure—diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  Google Scholar 

  2. DeLaBarre, B. & Brunger, A.T. Nucleotide dependent motion and mechanism of action of p97/VCP. J. Mol. Biol. 347, 437–452 (2005).

    Article  CAS  Google Scholar 

  3. Beuron, F. et al. Conformational changes in the AAA ATPase p97–p47 adaptor complex. EMBO J. 25, 1967–1976 (2006).

    Article  CAS  Google Scholar 

  4. Davies, J.M., Brunger, A.T. & Weis, W.I. Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. Structure 16, 715–726 (2008).

    Article  CAS  Google Scholar 

  5. Rouiller, I. et al. Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat. Struct. Biol. 9, 950–957 (2002).

    Article  CAS  Google Scholar 

  6. Jentsch, S. & Rumpf, S. Cdc48 (p97): a “molecular gearbox” in the ubiquitin pathway? Trends Biochem. Sci. 32, 6–11 (2007).

    Article  CAS  Google Scholar 

  7. Wójcik, C. et al. Valosin-containing protein (p97) is a regulator of endoplasmic reticulum stress and of the degradation of N-end rule and ubiquitin-fusion degradation pathway substrates in mammalian cells. Mol. Biol. Cell 17, 4606–4618 (2006).

    Article  Google Scholar 

  8. Wójcik, C., Yano, M. & DeMartino, G.N. RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. J. Cell Sci. 117, 281–292 (2004).

    Article  Google Scholar 

  9. Raasi, S. & Wolf, D.H. Ubiquitin receptors and ERAD: a network of pathways to the proteasome. Semin. Cell Dev. Biol. 18, 780–791 (2007).

    Article  CAS  Google Scholar 

  10. Ju, J.S. et al. Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875–888 (2009).

    Article  CAS  Google Scholar 

  11. Tresse, E. et al. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 6, 217–227 (2010).

    Article  CAS  Google Scholar 

  12. Halawani, D. et al. Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Mol. Cell Biol. 29, 4484–4494 (2009).

    Article  CAS  Google Scholar 

  13. Manno, A., Noguchi, M., Fukushi, J., Motohashi, Y. & Kakizuka, A. Enhanced ATPase activities as a primary defect of mutant valosin-containing proteins that cause inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Genes Cells 15, 911–922 (2010).

    CAS  PubMed  Google Scholar 

  14. Tsujimoto, Y. et al. Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer. Clin. Cancer Res. 10, 3007–3012 (2004).

    Article  CAS  Google Scholar 

  15. Alexandru, G. et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 134, 804–816 (2008).

    Article  CAS  Google Scholar 

  16. Asai, T. et al. VCP (p97) regulates NFκB signaling pathway, which is important for metastasis of osteosarcoma cell line. Jpn. J. Cancer Res. 93, 296–304 (2002).

    Article  CAS  Google Scholar 

  17. Dai, R.M. & Li, C.C. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat. Cell Biol. 3, 740–744 (2001).

    Article  CAS  Google Scholar 

  18. Meerang, M. et al. The ubiquitin-selective segregase VCP/p97 orchestrates the response to DNA double-strand breaks. Nat. Cell Biol. 13, 1376–1382 (2011).

    Article  CAS  Google Scholar 

  19. Mouysset, J. et al. Cell cycle progression requires the CDC-48UFD-1/NPL-4 complex for efficient DNA replication. Proc. Natl. Acad. Sci. USA 105, 12879–12884 (2008).

    Article  CAS  Google Scholar 

  20. Bursavich, M.G. et al. 2-Anilino-4-aryl-1,3-thiazole inhibitors of valosin-containing protein (VCP or p97). Bioorg. Med. Chem. Lett. 20, 1677–1679 (2010).

    Article  CAS  Google Scholar 

  21. Chou, T.F. & Deshaies, R.J. Development of p97 AAA ATPase inhibitors. Autophagy 7, 1091–1092 (2011).

    Article  CAS  Google Scholar 

  22. Chou, T.F., Li, K., Frankowski, K.J., Schoenen, F.J. & Deshaies, R.J. Structure-activity relationship study reveals ML240 and ML241 as potent and selective inhibitors of p97 ATPase. ChemMedChem 8, 297–312 (2013).

    Article  CAS  Google Scholar 

  23. Wang, Q., Li, L. & Ye, Y. Inhibition of p97-dependent protein degradation by Eeyarestatin I. J. Biol. Chem. 283, 7445–7454 (2008).

    Article  CAS  Google Scholar 

  24. Chou, T.F. et al. Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways. Proc. Natl. Acad. Sci. USA 108, 4834–4839 (2011).

    Article  CAS  Google Scholar 

  25. Xu, S., Peng, G., Wang, Y., Fang, S. & Karbowski, M. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell 22, 291–300 (2011).

    Article  CAS  Google Scholar 

  26. Noguchi, M. et al. ATPase activity of p97/valosin-containing protein is regulated by oxidative modification of the evolutionally conserved cysteine 522 residue in Walker A motif. J. Biol. Chem. 280, 41332–41341 (2005).

    Article  CAS  Google Scholar 

  27. Polucci, P. et al. Alkylsulfanyl-1,2,4-triazoles, a new class of allosteric valosine containing protein inhibitors. synthesis and structure-activity relationships. J. Med. Chem. 56, 437–450 (2013).

    Article  CAS  Google Scholar 

  28. Robinette, D., Neamati, N., Tomer, K.B. & Borchers, C.H. Photoaffinity labeling combined with mass spectrometric approaches as a tool for structural proteomics. Expert Rev. Proteomics 3, 399–408 (2006).

    Article  CAS  Google Scholar 

  29. Huyton, T. et al. The crystal structure of murine p97/VCP at 3.6 Å. J. Struct. Biol. 144, 337–348 (2003).

    Article  CAS  Google Scholar 

  30. Briggs, L.C. et al. Analysis of nucleotide binding to P97 reveals the properties of a tandem AAA hexameric ATPase. J. Biol. Chem. 283, 13745–13752 (2008).

    Article  CAS  Google Scholar 

  31. Ganley, I.G., Wong, P.M., Gammoh, N. & Jiang, X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol. Cell 42, 731–743 (2011).

    Article  CAS  Google Scholar 

  32. Rzymski, T. et al. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29, 4424–4435 (2010).

    Article  CAS  Google Scholar 

  33. Müller, J.M., Deinhardt, K., Rosewell, I., Warren, G. & Shima, D.T. Targeted deletion of p97 (VCP/CDC48) in mouse results in early embryonic lethality. Biochem. Biophys. Res. Commun. 354, 459–465 (2007).

    Article  Google Scholar 

  34. Huang, C., Li, G. & Lennarz, W.J. Dynamic flexibility of the ATPase p97 is important for its interprotomer motion transmission. Proc. Natl. Acad. Sci. USA 109, 9792–9797 (2012).

    Article  CAS  Google Scholar 

  35. Li, G., Huang, C., Zhao, G. & Lennarz, W.J. Interprotomer motion-transmission mechanism for the hexameric AAA ATPase p97. Proc. Natl. Acad. Sci. USA 109, 3737–3741 (2012).

    Article  CAS  Google Scholar 

  36. Rutkowski, D.T. et al. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol. 4, e374 (2006).

    Article  Google Scholar 

  37. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    Article  CAS  Google Scholar 

  38. Marciniak, S.J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    Article  CAS  Google Scholar 

  39. Ju, J.S. & Weihl, C.C. Inclusion body myopathy, Paget's disease of the bone and fronto-temporal dementia: a disorder of autophagy. Hum. Mol. Genet. 19, R38–R45 (2010).

    Article  CAS  Google Scholar 

  40. Kitami, M.I. et al. Dominant-negative effect of mutant valosin-containing protein in aggresome formation. FEBS Lett. 580, 474–478 (2006).

    Article  CAS  Google Scholar 

  41. Boyault, C. et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover. EMBO J. 25, 3357–3366 (2006).

    Article  CAS  Google Scholar 

  42. Bernales, S., McDonald, K.L. & Walter, P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423 (2006).

    Article  Google Scholar 

  43. Zhu, K., Dunner, K. Jr. & McConkey, D.J. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451–462 (2010).

    Article  CAS  Google Scholar 

  44. Pandey, U.B. et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859–863 (2007).

    Article  CAS  Google Scholar 

  45. Lee, J.Y. et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 29, 969–980 (2010).

    Article  CAS  Google Scholar 

  46. Fröhlich, K.U., Fries, H.W., Peters, J.M. & Mecke, D. The ATPase activity of purified CDC48p from Saccharomyces cerevisiae shows complex dependence on ATP-, ADP-, and NADH-concentrations and is completely inhibited by NEM. Biochim. Biophys. Acta 1253, 25–32 (1995).

    Article  Google Scholar 

  47. Lundgren, K. et al. BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol. Cancer Ther. 8, 921–929 (2009).

    Article  CAS  Google Scholar 

  48. Beria, I. et al. NMS-P937, a 4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline derivative as potent and selective Polo-like kinase 1 inhibitor. Bioorg. Med. Chem. Lett. 21, 2969–2974 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Messali, J. Malyszko, S. Thieffine, R. Perego, S. Re Depaolini, C. Albanese and D. Borghi for technical support and E. Pesenti, B. Salom and M. Caruso for helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

P.M. wrote the manuscript and coordinated project activities. A.I. wrote the manuscript, supervised the Nerviano Medical Sciences–Genentech collaboration and coordinated the project. P.K.J. revised the manuscript, coordinated Genentech activities and provided critical support to the project. R.D.A. developed the chemical expansion strategy and coordinated chemistry activities. B.V. and U.C. performed spectrometric analysis and photo-affinity labeling. N.A. and D.A. developed biochemical assays and analyzed compound activity. S.R. and C.P. designed constructs and produced recombinant proteins. F.G. collected cellular image analysis data. L.C. performed cellular treatments with siRNA and inhibitors and immunoblot analysis. C.O. performed molecular modeling studies for identification of the binding region of the allosteric inhibitors; P.P. and G.C. performed synthesis the reported VCP inhibitors. D.B. collected antiproliferative data. A.L. supported realization of HTS. E.C. performed ITC experiments. Y.X. performed siRNA rescue experiments. C.W. and D.J.A. performed combination studies with VCP siRNA and on stabilization of GFP-MCL1. A.G. provided support for and discussed cell biology activities. D.D. provided support for the chemical expansion strategy. T.O.B. provided support in allosteric inhibitor identification and coordination of Genentech activities.

Corresponding author

Correspondence to Paola Magnaghi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–20, Supplementary Tables 1 and 2 and Supplementary Note. (PDF 7380 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magnaghi, P., D'Alessio, R., Valsasina, B. et al. Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death. Nat Chem Biol 9, 548–556 (2013). https://doi.org/10.1038/nchembio.1313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1313

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer