Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural analysis of human KDM5B guides histone demethylase inhibitor development

Abstract

Members of the KDM5 (also known as JARID1) family are 2-oxoglutarate- and Fe2+-dependent oxygenases that act as histone H3K4 demethylases, thereby regulating cell proliferation and stem cell self-renewal and differentiation. Here we report crystal structures of the catalytic core of the human KDM5B enzyme in complex with three inhibitor chemotypes. These scaffolds exploit several aspects of the KDM5 active site, and their selectivity profiles reflect their hybrid features with respect to the KDM4 and KDM6 families. Whereas GSK-J1, a previously identified KDM6 inhibitor, showed about sevenfold less inhibitory activity toward KDM5B than toward KDM6 proteins, KDM5-C49 displayed 25–100-fold selectivity between KDM5B and KDM6B. The cell-permeable derivative KDM5-C70 had an antiproliferative effect in myeloma cells, leading to genome-wide elevation of H3K4me3 levels. The selective inhibitor GSK467 exploited unique binding modes, but it lacked cellular potency in the myeloma system. Taken together, these structural leads deliver multiple starting points for further rational and selective inhibitor design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain organization of full-length human KDM5B, and construct design and substrate kinetics for KDM5B deletion constructs.
Figure 2: Structure determination of human KDM5B.
Figure 3: The KDM5B structures reveal hybrid features with respect to the KDM4 and KDM6 families.
Figure 4: The active site of human KDM5B is amenable to selective-inhibitor development and can accommodate distinct inhibitor chemotypes.
Figure 5: KMD5-C70 is active in MM.1S myeloma cells.
Figure 6: KDM5-C70 increases H3K4me3 levels in myeloma cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Ng, S.S., Yue, W.W., Oppermann, U. & Klose, R.J. Dynamic protein methylation in chromatin biology. Cell. Mol. Life Sci. 66, 407–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Johansson, C. et al. The roles of Jumonji-type oxygenases in human disease. Epigenomics 6, 89–120 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Kooistra, S.M., & Helin, K. Molecular mechanisms and potential functions of histone demethylases. Nat. Rev. Mol. Cell Biol. 13, 297–311 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Allis, C.D. et al. New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Walport, L.J., Hopkinson, R.J. & Schofield, C.J. Mechanisms of human histone and nucleic acid demethylases. Curr. Opin. Chem. Biol. 16, 525–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. ENCODE Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  8. Pasini, D. et al. Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev. 22, 1345–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanchez, R. & Zhou, M.M. The PHD finger: a versatile epigenome reader. Trends Biochem. Sci. 36, 364–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tahiliani, M. et al. The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447, 601–605 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y. et al. The PHD1 finger of KDM5B recognizes unmodified H3K4 during the demethylation of histone H3K4me2/3 by KDM5B. Protein Cell 5, 837–850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Torres, I.O. et al. Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism. Nat. Commun. 6, 6204 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Rasmussen, P.B. & Staller, P. The KDM5 family of histone demethylases as targets in oncology drug discovery. Epigenomics 6, 277–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Pilka, E.S., James, T. & Lisztwan, J.H. Structural definitions of Jumonji family demethylase selectivity. Drug Discov. Today 20, 743–749 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Yamane, K. et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol. Cell 25, 801–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Chang, K.H. et al. Inhibition of histone demethylases by 4-carboxy-2,2′-bipyridyl compounds. ChemMedChem 6, 759–764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ng, S.S. et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature 448, 87–91 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Hutchinson, S.E. et al. Enabling lead discovery for histone lysine demethylases by high-throughput RapidFire mass spectrometry. J. Biomol. Screen. 17, 39–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Sakurai, M. et al. A miniaturized screen for inhibitors of Jumonji histone demethylases. Mol. Biosyst. 6, 357–364 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Clifton, I.J. et al. Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J. Inorg. Biochem. 100, 644–669 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Kruidenier, L. et al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488, 404–408 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Walport, L.J. et al. Human UTY(KDM6C) is a male-specific N-methyl lysyl demethylase. J. Biol. Chem. 289, 18302–18313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hillringhaus, L. et al. Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. J. Biol. Chem. 286, 41616–41625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. McDonough, M.A., Loenarz, C., Chowdhury, R., Clifton, I.J. & Schofield, C.J. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr. Opin. Struct. Biol. 20, 659–672 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. King, O.N. et al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PLoS One 5, e15535 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rose, N.R. et al. Selective inhibitors of the JMJD2 histone demethylases: combined nondenaturing mass spectrometric screening and crystallographic approaches. J. Med. Chem. 53, 1810–1818 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Woon, E.C. et al. Linking of 2-oxoglutarate and substrate binding sites enables potent and highly selective inhibition of JmjC histone demethylases. Angew. Chem. Int. Edn. Engl. 51, 1631–1634 (2012).

    Article  CAS  Google Scholar 

  28. Cheng, Y. & Prusoff, W.H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108 (1973).

    Article  CAS  PubMed  Google Scholar 

  29. Copeland, R.A. Enzymes 2nd edn. 266–304 (Wiley-VCH, 2000).

  30. Westaway, S.M. et al. Cell penetrant inhibitors of the KDM4 and KDM5 families of histone lysine demethylases. 2. Pyrido[3,4-d]pyrimidin-4(3H)-one derivatives. J. Med. Chem. 59, 1370–1387 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Heinemann, B. et al. Inhibition of demethylases by GSK-J1/J4. Nature 514, E1–E2 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Sayegh, J. et al. Identification of small molecule inhibitors of Jumonji AT-rich interactive domain 1B (JARID1B) histone demethylase by a sensitive high throughput screen. J. Biol. Chem. 288, 9408–9417 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horton, J.R. et al. Characterization of a linked Jumonji domain of the KDM5/JARID1 family of histone H3 lysine 4 demethylases. J. Biol. Chem. 291, 2631–2646 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Horton, J.R. et al. Enzymatic and structural insights for substrate specificity of a family of Jumonji histone lysine demethylases. Nat. Struct. Mol. Biol. 17, 38–43 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Chowdhury, R. et al. Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature 510, 422–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frye, S.V. The art of the chemical probe. Nat. Chem. Biol. 6, 159–161 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Rose, N.R. et al. Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases. J. Med. Chem. 55, 6639–6643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leslie, A.G. The integration of macromolecular diffraction data. Acta Crystallogr. D Biol. Crystallogr. 62, 48–57 (2006).

    Article  PubMed  Google Scholar 

  39. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Winter, G., Lobley, C.M. & Prince, S.M. Decision making in xia2. Acta Crystallogr. D Biol. Crystallogr. 69, 1260–1273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ross-Innes, C.S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Shen, L., Shao, N.,, Liu, X., & Nestler, E. ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15, 284 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in our laboratories is supported by funding from Arthritis Research UK (program grant number 20522 to U.O.), the NIHR Oxford Biomedical Research Unit (U.O.), Sarcoma UK (N.A.), the Bone Cancer Research Trust (N.A.), the Rosetrees Trust (N.A. and U.O.), and Cancer Research UK (grants C8717/A18245 (to C.J.) and 300/A13058 (to N.B.L.) and CRUK Oxford Development Fund to U.O. and C.J.). The Structural Genomics Consortium is a registered charity (number 1097737) that receives funds from AbbVie, Bayer Pharma AG, Boehringer Ingelheim, the Canada Foundation for Innovation, Genome Canada, GlaxoSmithKline, Janssen, Lilly Canada, Merck & Co., the Novartis Research Foundation, the Ontario Ministry of Economic Development and Innovation, Pfizer, São Paulo Research Foundation–FAPESP, Takeda, and the Wellcome Trust (092809/Z/10/Z). We thank Diamond Light Source for beamtime (proposal mx10619) and the staff of beamlines I02 and I03 for assistance with crystal testing and data collection. We are grateful to R. Rambo for help with SAXS data collection and analysis at the Diamond Light Source beamline B21, and to R. Klose (Department of Chemistry, Oxford University, Oxford, UK) for the human KDM5A construct and the FDH expression clone. We also acknowledge a sample of GSK467 kindly provided by GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Contributions

C.J. and U.O. designed experiments, analyzed data, supervised the study and wrote the manuscript. Data collection and structure refinements were done by S.V., R.P.N. and J.K. Construct design was done by C.J., H.S., U.E. and V.B. Cloning, mutagenesis and expression trials were done by C.S.-D., A.S., M.P. and N.B.-B. Purification, crystallization and optimization were done by C.J., S.V., A.S. and C.G. Enzymology was done by A.T. Cell culture experiments were done by N.W., E.S.H., S.M., N.A. and N.B.L. Compounds were provided by R.P., S.W., A.N., J.B. and P.E.B. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Catrine Johansson or Udo Oppermann.

Ethics declarations

Competing interests

H.S., U.E., V.B., S.W., J.B. and R.P. are pharmaceutical industry employees and shareholders.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–18 and Supplementary Tables 1–6. (PDF 21199 kb)

Supplementary Note

Synthetic Procedures (PDF 450 kb)

Supplementary Data Set 1

Annotated list of differentially H3K4me3 methylated peaks in multiple myeloma MM1S cell line, treated with KDM5-C70. (XLSX 4200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson, C., Velupillai, S., Tumber, A. et al. Structural analysis of human KDM5B guides histone demethylase inhibitor development. Nat Chem Biol 12, 539–545 (2016). https://doi.org/10.1038/nchembio.2087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2087

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research