Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection

Abstract

Aicardi-Goutières syndrome (AGS) is an autosomal recessive neurological disorder, the clinical and immunological features of which parallel those of congenital viral infection. Here we define the composition of the human ribonuclease H2 enzyme complex and show that AGS can result from mutations in the genes encoding any one of its three subunits. Our findings demonstrate a role for ribonuclease H in human neurological disease and suggest an unanticipated relationship between ribonuclease H2 and the antiviral immune response that warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of AGS2 critical region and RNASEH2B gene depicting location of identified mutations.
Figure 2: Schematic of AGS3 region, the RNASEH2C gene, its mutations and sequence conservation in other species.
Figure 3: The RNASEH2A gene, genomic location, gene structure and mutation location.
Figure 4: Human RNASEH2B, RNASEH2C and RNASEH2A form an enzymatically active type II ribonuclease H complex when expressed in mammalian cells, and mutation in RNASEH2A reduces ribonuclease H activity.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Aicardi, J. & Goutières, F. A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann. Neurol. 15, 49–54 (1984).

    Article  CAS  PubMed  Google Scholar 

  2. Goutières, F. Aicardi-Goutières syndrome. Brain Dev. 27, 201–206 (2005).

    Article  PubMed  Google Scholar 

  3. Goutières, F., Aicardi, J., Barth, P.G. & Lebon, P. Aicardi-Goutières syndrome: an update and results of interferon-alpha studies. Ann. Neurol. 44, 900–907 (1998).

    Article  PubMed  Google Scholar 

  4. Bale, J.F., Jr ., Bray, P.F. & Bell, W.E. Neuroradiographic abnormalities in congenital cytomegalovirus infection. Pediatr. Neurol. 1, 42–47 (1985).

    Article  PubMed  Google Scholar 

  5. Numazaki, K. & Fujikawa, T. Intracranial calcification with congenital rubella syndrome in a mother with serologic immunity. J. Child Neurol. 18, 296–297 (2003).

    Article  PubMed  Google Scholar 

  6. Mitchell, W. Neurological and developmental effects of HIV and AIDS in children and adolescents. Ment. Retard. Dev. Disabil. Res. Rev. 7, 211–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Belman, A.L. et al. AIDS: calcification of the basal ganglia in infants and children. Neurology 36, 1192–1199 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Lebon, P., Meritet, J.F., Krivine, A. & Rozenberg, F. Interferon and Aicardi-Goutières syndrome. Eur. J. Paediatr. Neurol. 6 (Suppl.), A47–A53 (2002).

    Article  PubMed  Google Scholar 

  9. Krivine, A. et al. Measuring HIV-1 RNA and interferon-alpha in the cerebrospinal fluid of AIDS patients: insights into the pathogenesis of AIDS Dementia Complex. J. Neurovirol. 5, 500–506 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Lebon, P., Ponsot, G., Aicardi, J., Goutières, F. & Arthuis, M. Early intrathecal synthesis of interferon in herpes encephalitis. Biomedicine 31, 267–271 (1979).

    CAS  PubMed  Google Scholar 

  11. Dussaix, E., Lebon, P., Ponsot, G., Huault, G. & Tardieu, M. Intrathecal synthesis of different alpha-interferons in patients with various neurological diseases. Acta Neurol. Scand. 71, 504–509 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Kumar, D., Rittey, C., Cameron, A.H. & Variend, S. Recognizable inherited syndrome of progressive central nervous system degeneration and generalized intracranial calcification with overlapping phenotype of the syndrome of Aicardi and Goutières. Am. J. Med. Genet. 75, 508–515 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Crow, Y.J. et al. Aicardi-Goutières syndrome displays genetic heterogeneity with one locus (AGS1) on chromosome 3p21. Am. J. Hum. Genet. 67, 213–221 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crow, Y.J. et al. Cree encephalitis is allelic with Aicardi-Goutières syndrome: implications for the pathogenesis of disorders of interferon alpha metabolism. J. Med. Genet. 40, 183–187 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ali, M. et al. A second locus for Aicardi-Goutières syndrome at chromosome 13q14–21. J. Med. Genet. 43, 444–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Broman, K.W. & Weber, J.L. Long homozygous chromosomal segments in reference families from the Centre d'Etude du Polymorphisme Humain. Am. J. Hum. Genet. 65, 1493–1500 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gibson, J., Morton, N.E. & Collins, A. Extended tracts of homozygosity in outbred human populations. Hum. Mol. Genet. 15, 789–795 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  PubMed  Google Scholar 

  19. Henikoff, S. & Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jeong, H.S., Backlund, P.S., Chen, H.C., Karavanov, A.A. & Crouch, R.J. RNase H2 of Saccharomyces cerevisiae is a complex of three proteins. Nucleic Acids Res. 32, 407–414 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohtani, N. et al. Identification of the genes encoding Mn2+-dependent RNase HII and Mg2+-dependent RNase HIII from Bacillus subtilis: classification of RNases H into three families. Biochemistry 38, 605–618 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Frank, P., Braunshofer-Reiter, C., Wintersberger, U., Grimm, R. & Busen, W. Cloning of the cDNA encoding the large subunit of human RNase HI, a homologue of the prokaryotic RNase HII. Proc. Natl. Acad. Sci. USA 95, 12872–12877 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Arudchandran, A. et al. The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 5, 789–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Eder, P.S. & Walder, J.A. Ribonuclease H from K562 human erythroleukemia cells. Purification, characterization, and substrate specificity. J. Biol. Chem. 266, 6472–6479 (1991).

    CAS  PubMed  Google Scholar 

  26. Qiu, J., Qian, Y., Frank, P., Wintersberger, U. & Shen, B. Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging-strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol. Cell. Biol. 19, 8361–8371 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eder, P.S., Walder, R.Y. & Walder, J.A. Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA. Biochimie 75, 123–126 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Rydberg, B. & Game, J. Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. Proc. Natl. Acad. Sci. USA 99, 16654–16659 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sanchis, A. et al. Genetic syndromes mimic congenital infections. J. Pediatr. 146, 701–705 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Chapados, B.R. et al. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication. J. Mol. Biol. 307, 541–556 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Parniak, M.A., Min, K.L., Budihas, S.R., Le Grice, S.F. & Beutler, J.A. A fluorescence-based high-throughput screening assay for inhibitors of human immunodeficiency virus-1 reverse transcriptase-associated ribonuclease H activity. Anal. Biochem. 322, 33–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Baraitser, M., Brett, E.M. & Piesowicz, A.T. Microcephaly and intracranial calcification in two brothers. J. Med. Genet. 20, 210–212 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reardon, W. et al. Autosomal recessive congenital intrauterine infection-like syndrome of microcephaly, intracranial calcification, and CNS disease. Am. J. Med. Genet. 52, 58–65 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Schwarz, K.B., Ferrie, C.D. & Woods, C.G. Two siblings with a new Aicardi-Goutières-like syndrome. Dev. Med. Child Neurol. 44, 422–425 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Gardner, R.J. et al. Severe fetal brain dysgenesis with focal calcification. Prenat. Diagn. 25, 362–364 (2005).

    Article  PubMed  Google Scholar 

  36. Coffin, J.M., Hughes, S.H. & Varmus, H.E. Retroviruses (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997).

  37. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Campbell, I.L. et al. Structural and functional neuropathology in transgenic mice with CNS expression of IFN-alpha. Brain Res. 835, 46–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Jackson, A.P. et al. Primary autosomal recessive microcephaly (MCPH1) maps to chromosome 8p22-pter. Am. J. Hum. Genet. 63, 541–546 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kruglyak, L., Daly, M.J., Reeve-Daly, M.P. & Lander, E.S. Parametric and nonparametric linkage analysis: A unified multipoint approach. Am. J. Hum. Genet. 58, 1347–1363 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Goodstadt, L. & Ponting, C.P. CHROMA: consensus-based colouring of multiple alignments for publication. Bioinformatics 17, 845–846 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Schwede, T., Kopp, J., Guex, N. & Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hooft, R.W., Vriend, G., Sander, C. & Abola, E.E. Errors in protein structures. Nature 381, 272 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33-38–27-28 (1996).

    Article  Google Scholar 

  45. Van Aelst, L., Joneson, T. & Bar-Sagi, D. Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J. 15, 3778–3786 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the families and their clinicians for their participation in this study; G. Taylor, S. Farrington and C. Hayward for contributing control samples; A. Diamond for advice on Mutation Surveyor; S. McKay and the MRC HGU core sequencing service for advice and technical support; D. Stuart for preparation of illustrations; P. Hohenstein and N. Gilbert for assistance with reagents; V. Van Heyningen, J. Sanford, D. Fitzpatrick, W. Bickmore, B. Vernay, A. Wright and N. Hastie for discussions and comments; F.B. Longo and the International Aicardi-Goutières syndrome Association for their encouragement and K. Norton, L. Cervero and G. Pitelet for their help clinically. This work was supported by the MRC, the Fondazione Cariplo, The Leeds Teaching Hospitals Charitable Foundation and the West Riding Medical Research Trust. A.P.J. is an MRC Clinician Scientist, and A.P.J. and CPP are funded by the MRC.

Author information

Authors and Affiliations

Authors

Contributions

Y.J.C. and R.P. performed the microsatellite genotyping; A.P.J. performed linkage analysis and A.G., A.L., B.H., R.P. and A.P.J performed mutation screening and sequencing of controls. A.L. and A.P.J. made the vector constructs and designed the enzyme assays. A.L. and E.G. performed the immunoprecipitations and enzyme assays. C.P.P. established orthology between RNASEH2B and Rnh2Bp and between RNASEH2C and Rnh2Cp, and C.S. performed the structural modeling. A.P.J. wrote the paper with Y.J.C., D.T.B. and C.P.P. Y.J.C. curated the clinical samples and data. All other authors provided clinical samples and data.

Note: Supplementary information is available on the Nature Genetics website..

Corresponding authors

Correspondence to Yanick J Crow or Andrew P Jackson.

Ethics declarations

Competing interests

On behalf of the authors, Medical Research Council Technology has filed a patent application for the human ribonuclease H2 complex.

Supplementary information

Supplementary Fig. 1

Neuroimaging and clinical findings in Aicardi-Goutières syndrome. (PDF 459 kb)

Supplementary Fig. 2

Microsatellite genotyping in two non-consanguineous families refines the AGS2 critical interval. (PDF 33 kb)

Supplementary Fig. 3

Multiple sequence alignment of RNASEH2B/Rnh2Bp and RNASEH2C/Rnh2Cp homologs from representative eukaryotic species. (PDF 56 kb)

Supplementary Fig. 4

The AGS3 locus maps to chromosome 11q13.2. (PDF 36 kb)

Supplementary Fig. 5

Pedigrees of families described. (PDF 50 kb)

Supplementary Table 1

Primer sequences (PDF 30 kb)

Supplementary Note (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crow, Y., Leitch, A., Hayward, B. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection. Nat Genet 38, 910–916 (2006). https://doi.org/10.1038/ng1842

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1842

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing