Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior

Abstract

Urocortin is a member of the corticotropin-releasing hormone peptide family and is found in many discrete brain regions. The distinct expression pattern of urocortin suggests that it influences such behaviors as feeding, anxiety and auditory processing. To better define the physiological roles of urocortin, we have generated mice carrying a null mutation of the urocortin gene. Urocortin-deficient mice have normal basal feeding behavior and stress responses, but show heightened anxiety-like behaviors in the elevated plus maze and open-field tests. In addition, hearing is impaired in the mutant mice at the level of the inner ear, suggesting that urocortin is involved in the normal development of cochlear sensory-cell function. These results provide the first example of a function for any peptidergic system in hearing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of Ucn mutant mice.
Figure 2: Ucn mutant mice show normal hormonal response to restraint stress and normal feeding response to 24-h food deprivation.
Figure 3: Increased anxiety-like behavior of Ucn-null mice in elevated plus maze and open-field tests.
Figure 4: Decreased Crhr2 mRNA expression in the brains of Ucn mutant mice.
Figure 5: Extensive network of Ucn-immunoreactive terminals and expression of CRH receptors in the inner hair-cell region of the mouse organ of Corti.
Figure 6: Impairment of hearing in Ucn mutant mice.

Similar content being viewed by others

References

  1. Vale, W., Spiess, J., Rivier, C. & Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213, 1394–1397 (1981).

    Article  CAS  Google Scholar 

  2. Chadwick, D.J., Marsh, J. & Ackrill, K. Corticotropin-Releasing Factor (John Wiley, London, 1993).

    Book  Google Scholar 

  3. Lederis, K., Letter, A., McMaster, D., Moore, G. & Schlesinger, D. Complete amino acid sequence of urotensin I, a hypotensive and corticotropin-releasing neuropeptide from Catostomus. Science 218, 162–165 (1982).

    Article  CAS  Google Scholar 

  4. Lederis, K. et al. Urotensin I—a novel CRF-like peptide in Catostomus commersoni urophysis. Proc. West Pharmacol. Soc. 25, 223–227 (1982).

    CAS  PubMed  Google Scholar 

  5. Montecucchi, P.C. & Henschen, A. Amino acid composition and sequence anaylsis of sauvagine, a new active peptide from the skin of Phyllomedusa sauvagei. Int. J. Peptide Protein Res. 18, 113–120 (1981).

    Article  CAS  Google Scholar 

  6. Vaughan, J. et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378, 287–292 (1995).

    Article  CAS  Google Scholar 

  7. Reyes, T.M. et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl Acad. Sci. USA 98, 2843–2848 (2001).

    Article  CAS  Google Scholar 

  8. Lewis, K. et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl Acad. Sci. USA 98, 7570–7575 (2001).

    Article  CAS  Google Scholar 

  9. Hsu, S.Y. & Hsueh, A.J. Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nature Med. 7, 605–611 (2001).

    Article  CAS  Google Scholar 

  10. Bittencourt, J.C. et al. Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J. Comp. Neurol. 415, 285–312 (1999).

    Article  CAS  Google Scholar 

  11. Spina, M. et al. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science 273, 1561–1564 (1996).

    Article  CAS  Google Scholar 

  12. Kihara, N. et al. Effects of central and peripheral urocortin on fed and fasted gastroduodenal motor activity in conscious rats. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G406–G419 (2001).

    Article  CAS  Google Scholar 

  13. Moreau, J.L., Kilpatrick, G. & Jenck, F. Urocortin, a novel neuropeptide with anxiogenic-like properties. Neuroreport 8, 1697–1701 (1997).

    Article  CAS  Google Scholar 

  14. Slawecki, C.J., Somes, C., Rivier, J.E. & Ehlers, C.L. Neurophysiological effects of intracerebroventricular administration of urocortin. Peptides 20, 211–218 (1999).

    Article  CAS  Google Scholar 

  15. Warr, W.B. Organization of olivocochlear efferent systems in mammals. In Mammalian Auditory Pathway: Neuroanatomy Vol. 1 (ed. Webster, D.) 410–448 (Springer, New York, 1992).

    Book  Google Scholar 

  16. Vetter, D.E. & Mugnaini, E. Distribution and dendritic features of three groups of rat olivocochlear neurons. A study with two retrograde cholera toxin tracers. Anat. Embryol. (Berl.) 185, 1–16 (1992).

    Article  CAS  Google Scholar 

  17. Hashimoto, S., Kimura, R.S. & Takasaka, T. Computer-aided three-dimensional reconstruction of the inner hair cells and their nerve endings in the guinea pig cochlea. Acta Otolaryngol. (Stockh.) 109, 228–234 (1990).

    Article  CAS  Google Scholar 

  18. Liberman, M. Efferent synapses in the inner hair cell area of the cat cochlea: an electron microscopic study of serial sections. Hear Res. 3, 189–204 (1980).

    Article  CAS  Google Scholar 

  19. Vetter, D.E., Adams, J.C. & Mugnaini, E. Chemically distinct rat olivocochlear neurons. Synapse 7, 21–43 (1991).

    Article  CAS  Google Scholar 

  20. Hoffman, D.W., Altschuler, R.A. & Fex, J. High-performance liquid chromatographic identification of enkephalin-like peptides in the cochlea. Hear. Res. 9, 71–78 (1983).

    Article  CAS  Google Scholar 

  21. Altschuler, R.A., Fex, J., Parakkal, M.H. & Eckenstein, F. Colocalization of enkephalin-like and choline acetyltransferase-like immunoreactivities in olivocochlear neurons of the guinea pig. J. Histochem. Cytochem. 32, 839–843 (1984).

    Article  CAS  Google Scholar 

  22. Abou-Madi, L., Pontarotti, P., Tramu, G., Cupo, A. & Eybalin, M. Coexistence of putative neuroactive substances in lateral olivocochlear neurons of rat and guinea pig. Hear Res. 30, 135–146 (1987).

    Article  CAS  Google Scholar 

  23. Hoffman, D.W., Zamir, N., Rubio, J.A., Altschuler, R.A. & Fex, J. Proenkephalin and prodynorphin related neuropeptides in the cochlea. Hear Res. 17, 47–50 (1985).

    Article  CAS  Google Scholar 

  24. Altschuler, R.A., Hoffman, D.W., Reeks, K.A. & Fex, J. Localization of dynorphin B-like and α-neoendorphin-like immunoreactivities in the guinea pig organ of Corti. Hear Res. 17, 249–258 (1985).

    Article  CAS  Google Scholar 

  25. Adams, J.C., Mroz, E.A. & Sewell, W.F. A possible neurotransmitter role for CGRP in a hair-cell sensory organ. Brain Res. 419, 347–351 (1987).

    Article  CAS  Google Scholar 

  26. Bailey, G.P. & Sewell, W.F. Calcitonin gene-related peptide suppresses hair cell responses to mechanical stimulation in the Xenopus lateral line organ. J. Neurosci. 20, 5163–5169 (2000).

    Article  CAS  Google Scholar 

  27. Sewell, W.F. & Starr, P.A. Effects of calcitonin gene-related peptide and efferent nerve stimulation on afferent transmission in the lateral line organ. J. Neurophysiol. 65, 1158–1169 (1991).

    Article  CAS  Google Scholar 

  28. Spina, M.G. et al. Time-dependent induction of anxiogenic-like effects after central infusion of urocortin or corticotropin-releasing factor in the rat. Psychopharmacology (Berl.) 160, 113–121 (2002).

    Article  CAS  Google Scholar 

  29. Smith, G.W. et al. Corticotropin repleasing factor receptor–1 deficient mice display decreased anxiety, impaired stress response and aberrant neuroendocrine development. Neuron 20, 1093–1102 (1998).

    Article  CAS  Google Scholar 

  30. Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nature Genet. 19, 162–166 (1998).

    Article  CAS  Google Scholar 

  31. Bale, T.L. et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behavior and are hypersensitive to stress. Nature Genet. 24, 410–414 (2000).

    Article  CAS  Google Scholar 

  32. Coste, S.C. et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nature Genet. 24, 403–409 (2000).

    Article  CAS  Google Scholar 

  33. Kishimoto, T. et al. Deletion of u.c.rhr2 reveals an anxiolytic role for corticotropin- releasing hormone receptor-2. Nature Genet. 24, 415–419 (2000).

    Article  CAS  Google Scholar 

  34. Ruggero, M.A., Robles, L., Rich, N.C. & Recio, A. Basilar membrane responses to two-tone and broadband stimuli. Phil. Trans. R. Soc. Lond. B 336, 307–314 (1992).

    Article  CAS  Google Scholar 

  35. Ruggero, M.A. Responses to sound of the basilar membrane of the mammalian cochlea. Curr. Opin. Neurobiol. 2, 449–456 (1992).

    Article  CAS  Google Scholar 

  36. Probst, R., Lonsbury-Martin, B.L. & Martin, G.K. A review of otoacoustic emissions. J. Acoust. Soc. Am. 89, 2027–2067 (1991).

    Article  CAS  Google Scholar 

  37. Turnbull, A.V., Vaughan, J., Rivier, J.E., Vale, W.W. & Rivier, C. Urocortin is not a significant regulator of intermittent electrofootshock-induced adrenocorticotropin secretion in the intact male rat. Endocrinology 140, 71–78 (1999).

    Article  CAS  Google Scholar 

  38. Smagin, G.N., Howen, L.A., Ryan, D.H., DeSouza, E.B. & Harris, R.B. The role of CRF2 receptors in corticotropin-releasing factor and urocortin-induced anorexia. Neuroreport 9, 1601–1606 (1998).

    Article  CAS  Google Scholar 

  39. Kozicz, T., Yanaihara, H. & Arimura, A. Distribution of urocortin-like immunoreactivity in the central nervous system of the rat. J. Comp. Neurol. 391, 1–10 (1998).

    Article  CAS  Google Scholar 

  40. Skelton, K.H., Nemeroff, C.B., Knight, D.L. & Owens, M.J. Chronic administration of the triazolobenzodiazepine alprazolam produces opposite effects on corticotropin-releasing factor and urocortin neuronal systems. J. Neurosci. 20, 1240–1248 (2000).

    Article  CAS  Google Scholar 

  41. Eybalin, M. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol. Rev. 73, 309–373 (1993).

    Article  CAS  Google Scholar 

  42. Walsh, E., McGee, J., McFadden, S. & Liberman, M. Long-term effects of sectioning the olivocochlear bundle in neonatal cats. J. Neurosci. 18, 3859–3869 (1998).

    Article  CAS  Google Scholar 

  43. Vetter, D.E. et al. Role of α9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 23, 93–103 (1999).

    Article  CAS  Google Scholar 

  44. Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E. & Heinemann, S. α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705–715 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Sawchenko for bringing to our attention the potential role of Ucn on the auditory system. We also thank P. Chen for help with the image analysis, K. Creehan for animal assistance and S. Guerra and M. Arends for editorial assistance. This work was supported in part by grants from the US National Institutes of Health (to S.F.H., M.C.L., W.V. and K.F.L.), the Robert J. and Helen C. Kleberg Foundation, the Ludwick Family Foundation and the Foundation for Research. C.L. and L.Z. were supported by NIH National Research Service Award fellowships. This is publication number 14789-NP from The Scripps Research Institute. K.-F.L. is a Pew Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Fen Lee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetter, D., Li, C., Zhao, L. et al. Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Nat Genet 31, 363–369 (2002). https://doi.org/10.1038/ng914

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng914

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing