Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A mixed seismic–aseismic stress release episode in the Andean subduction zone

Abstract

In subduction zones, stress is released by earthquakes and transient aseismic slip. The latter falls into two categories: slow slip and afterslip. Slow-slip events emerge spontaneously during the interseismic phase, and show a progressive acceleration of slip with a negligible contribution of synchronous tremors or microseismicity to the energy, or moment release1,2,3,4,5,6,7,8,9,10,11,12. In contrast, afterslip occurs immediately after large and moderate earthquakes, decelerates over time, and releases between 20 and 400% of the moment released by the preceding earthquake13,14,15,16,17,18. Here we use seismic and GPS data to identify transient aseismic slip that does not fit into either of these categories. We document a seismic–aseismic slip sequence which occurred at shallow depths along a weakly coupled part of the Andean subduction zone19 in northern Peru and lasted seven months. The sequence generated several moderate earthquakes that together account for about 25% of the total moment released during the full sequence, equivalent to magnitude 6.7. Transient slip immediately followed two of the earthquakes, with slip slowing at a logarithmic rate. Considered separately, the moment released by transient slip following the second earthquake was more than 1,000% of the moment released during the earthquake itself, a value incompatible with classical models of afterslip. Synchronous seismic swarms and aseismic slip may therefore define a stress-release process that is distinct from slow-slip events and afterslip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geodetic time series and seismicity rate.
Figure 2: Time evolution of seismicity during the sequence and associated total slip.
Figure 3: Comparison of normalized source time functions (NSTF).
Figure 4: Conceptual model of the 2009 northern Peru sequence.

Similar content being viewed by others

References

  1. Ozawa, S., Murakami, M. & Tada, T. Time-dependent inversion study of the slow thrust event in the Nankai trough subduction zone, southwestern Japan. J. Geophys. Res. 106, 787–802 (2001).

    Article  Google Scholar 

  2. Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Article  Google Scholar 

  3. Schwartz, S. Y. & Rokosky, J. M. Slow slip events and seismic tremor at Circum-Pacific subduction zones. Rev. Geophys. 45, 1–32 (2007).

    Article  Google Scholar 

  4. Rogers, G. & Dragert, H. Episodic tremor and slip on the Cascadia subduction zone: The chatter of silent slip. Science 300, 1942–1943 (2003).

    Article  Google Scholar 

  5. Hirose, H. & Obara, K. Repeating short- and long-term slow slip events with deep tremor activity around the Bungo Channel region, southwest Japan. Earth Planets Space 57, 961–972 (2005).

    Article  Google Scholar 

  6. Kao, H., Wang, K., Dragert, H., Kao, J. Y. & Rogers, G. Estimating seismic moment magnitude (Mw) of tremor bursts in northern Cascadia: Implications for the ‘seismic efficiency’ of episodic tremor and slip. Geophys. Res. Lett. 37, L19306 (2010).

    Google Scholar 

  7. Wallace, L. M. & Beavan, J. Diverse slow slip behavior at the Hikurangi subduction margin, New Zealand. J. Geophys. Res. 115, B12402 (2010).

    Article  Google Scholar 

  8. Douglas, A., Beavan, J., Wallace, L. & Townend, J. Slow slip on the northern Hikurangi subduction interface, New Zealand. Geophys. Res. Lett. 32, L16305 (2005).

    Article  Google Scholar 

  9. Delahaye, E. J., Townend, J., Reyners, M. E. & Rogers, G. Microseismicity but no tremor accompanying slow slip in the Hikurangi subduction zone, New Zealand. Earth Planet. Sci. Lett. 277, 21–28 (2009).

    Article  Google Scholar 

  10. Ozawa, S., Suito, H. & Tobita, M. Occurrence of quasi-periodic slow-slip off the east coast of the Boso Peninsula, Central Japan. Earth Planets Space 59, 1241–1245 (2007).

    Article  Google Scholar 

  11. Vallée, M. et al. Intense interface seismicity triggered by a shallow slow slip event in the Central Ecuador subduction zone. J. Geophys. Res. 118, 2965–2981 (2013).

    Article  Google Scholar 

  12. Walter, J. I., Schwartz, S. Y., Protti, J. M. & Gonzalez, V. Persistent tremor within the northern Costa Rica seismogenic zone. Geophys. Res. Lett. 38, L01307 (2011).

    Article  Google Scholar 

  13. Heki, K., Miyazaki, S. & Tsuji, H. Silent fault slip following an interplate thrust earthquake at the Japan Trench. Nature 386, 595–598 (1997).

    Article  Google Scholar 

  14. Yagi, Y., Kikuchi, M. & Sagiya, T. Co-seismic slip, post-seismic slip, and aftershocks associated with two large earthquakes in 1996 in Hyuga-nada, Japan. Earth Planets Space 53, 793–803 (2001).

    Article  Google Scholar 

  15. Suito, H., Nishimura, T., Tobita, M., Imakiire, T. & Ozawa, S. Interplate fault slip along the Japan Trench before the occurrence of the 2011 off the Pacific coast of Tohoku earthquake as inferred from GPS data. Earth Planets Space 63, 615–619 (2011).

    Article  Google Scholar 

  16. Bürgmann, R. et al. Rapid aseismic moment release following the 5 December, 1997 Kronotsky, Kamchatka, earthquake. Geophys. Res. Lett. 28, 1331–1334 (2001).

    Article  Google Scholar 

  17. Pritchard, M. E. & Simons, M. An aseismic slip pulse in northern Chile and along-strike variations in seismogenic behavior. J. Geophys. Res. 111, B8405 (2006).

    Article  Google Scholar 

  18. Perfettini, H. et al. Seismic and aseismic slip on the Central Peru megathrust. Nature 465, 78–81 (2010).

    Article  Google Scholar 

  19. Nocquet, J.-M. et al. Motion of continental slivers and creeping subduction in the northern Andes. Nature Geosci. 7, 287–291 (2014).

    Article  Google Scholar 

  20. Pelayo, A. M. & Wiens, D. A. The November 20, 1960 Peru tsunami earthquake: Source mechanism of a slow event. Geophys. Res. Lett. 17, 661–664 (1990).

    Article  Google Scholar 

  21. Ihmle, P. F., Gomez, J.-M., Heinrich, P. & Guibourg, S. The 1996 Peru tsunamigenic earthquake: Broadband source process. Geophys. Res. Lett. 25, 2691–2694 (1998).

    Article  Google Scholar 

  22. Ekström, G., Nettles, M. & Dziewonski, A. M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 201, 1–9 (2012).

    Article  Google Scholar 

  23. Bilek, S. L. & Lay, T. Tsunami earthquakes possibly widespread manifestations of frictional conditional stability. Geophys. Res. Lett. 29, 181–184 (2002).

    Article  Google Scholar 

  24. Dieterich, J. H. Modeling of rock friction experimental results and constitutive equations. J. Geophys. Res. 84, 2161–2168 (1979).

    Article  Google Scholar 

  25. Kawasaki, I. et al. The 1992 Sanriku-Oki, Japan, ultra-slow earthquake. J. Phys. Earth 105–116 (1995).

    Article  Google Scholar 

  26. Perfettini, H. & Avouac, J. Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi–Chi earthquake, Taiwan. J. Geophys. Res. 109, B02304 (2004).

    Google Scholar 

  27. Hawthorne, J. C. & Rubin, A. M. Tidal modulation of slow slip in Cascadia. J. Geophys. Res. 115, B09406 (2010).

    Article  Google Scholar 

  28. Ozawa, S. Shortening of recurrence interval of Boso slow slip events in Japan. Geophys. Res. Lett. 41, 2762–2768 (2014).

    Article  Google Scholar 

  29. Nadeau, R. M. & Guilhem, A. Nonvolcanic tremor evolution and the San Simeon and Parkfield, California, earthquakes. Science 325, 191–193 (2009).

    Article  Google Scholar 

  30. Holtkamp, S. G. & Brudzinski, M. R. Earthquake swarms in circum-Pacific subduction zones. Earth Planet. Sci. Lett. 305, 215–225 (2011).

    Article  Google Scholar 

  31. Herring, T. A., King, R. W. & Mcclusky, S. C. Documentation of the MIT GPS Analysis Software: GAMIT v 10.50, Massachusetts Institute of Technology, (2013); http://www-gpsg.mit.edu/~simon/gtgk

  32. Hayes, G. P., Wald, D. J. & Johnson, R. L. Slab1.0: A three-dimensional model of global subduction zone geometries. J. Geophys. Res. 117, B01302 (2012).

    Article  Google Scholar 

  33. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992).

    Google Scholar 

  34. Tarantola, A. Inverse Problem Theory (SIAM, 2005).

    Google Scholar 

  35. Radiguet, M. et al. Slow slip events and strain accumulation in the Guerrero gap, Mexico. J. Geophys. Res. 117, B04305 (2012).

    Article  Google Scholar 

  36. Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D. & Kradolfer, U. Initial reference models in local earthquake tomography. J. Geophys. Res. 99, 19635–19646 (1994).

    Article  Google Scholar 

  37. Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B. & Vergoz, J. SCARDEC: A new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution. Geophys. J. Int. 184, 338–358 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the ANR (Agence Nationale de la Recherche, contract number ANR-07-BLAN-0143-01) and has continuously been supported by the IRD (Institut de Recherche pour le Développement). We thank J. P. Ampuero from Caltech for the use of broadband seismic data from a temporary network in the frame of the Sisnort-08 project. J.C.V.-L. acknowledges support provided by the IRD-DSF through a PhD grant.

Author information

Authors and Affiliations

Authors

Contributions

J.C.V.-L. and J.-M.N. carried out fieldwork, GPS analysis and slip inversion; J.C.V.-L. performed the seismicity analysis; J.-M.N. and F.R. performed the rate-and-state calculations; M.V. conducted the source time functions analysis; M.C., F.B. and X.M. carried out GPS fieldwork; H.T. provided seismological data; T.T. performed GPS analysis; J.-M.N., F.R. and J.C.V.-L. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to J. C. Villegas-Lanza or J.-M. Nocquet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villegas-Lanza, J., Nocquet, JM., Rolandone, F. et al. A mixed seismic–aseismic stress release episode in the Andean subduction zone. Nature Geosci 9, 150–154 (2016). https://doi.org/10.1038/ngeo2620

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2620

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing