Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Functional annotation of noncoding sequence variants

Abstract

Identifying functionally relevant variants against the background of ubiquitous genetic variation is a major challenge in human genetics. For variants in protein-coding regions, our understanding of the genetic code and splicing allows us to identify likely candidates, but interpreting variants outside genic regions is more difficult. Here we present genome-wide annotation of variants (GWAVA), a tool that supports prioritization of noncoding variants by integrating various genomic and epigenomic annotations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mean ROC curves for tenfold cross-validation experiments on each of the three training sets.
Figure 2: Classifier scores for recurrent versus nonrecurrent noncoding somatic mutations from the COSMIC database.

Similar content being viewed by others

References

  1. Hindorff, L.A. et al. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooper, G.M. & Shendure, J. Nat. Rev. Genet. 12, 628–640 (2011).

    CAS  PubMed  Google Scholar 

  3. The ENCODE Project Consortium. Nature 489, 57–74 (2012).

  4. Bernstein, B.E. et al. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar, P., Henikoff, S. & Ng, P.C. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Adzhubei, I.A. et al. Nat. Methods 7, 248–249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schmidt, D. et al. Science 328, 1036–1040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stenson, P.D. et al. Genome Med. 1, 13 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  9. The 1000 Genomes Project Consortium. Nature 491, 56–65 (2012).

  10. Breiman, L. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  11. Maurano, M.T. et al. Science 337, 1190–1195 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forbes, S.A. et al. Nucleic Acids Res. 39, D945–D950 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Schwarz, J.M., Rödelsperger, C., Schuelke, M. & Seelow, D. Nat. Methods 7, 575–576 (2010).

    CAS  PubMed  Google Scholar 

  14. Flicek, P. et al. Nucleic Acids Res. 41, D48–D55 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Mathelier, A. et al. Nucleic Acids Res. 42, D142–D147 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffman, M.M. et al. Nucleic Acids Res. 41, 827–841 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Hoffman, M.M. et al. Nat. Methods 9, 473–476 (2013).

    Article  Google Scholar 

  18. Ernst, J. & Kellis, M. Nat. Methods 9, 215–216 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Davydov, E.V. et al. PLoS Comput. Biol. 6, e1001025 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harrow, J. et al. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Church, D. et al. PLoS Biol. 9, e1001091 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pedregosa, F. et al. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  23. McLaren, W.M. et al. Bioinformatics 26, 2069–2070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.R.S.R. is supported by European Molecular Biology Laboratory and the Sanger Institute via an EBI-Sanger Postdoctoral Fellowship. This work was funded by the Wellcome Trust (098051 and 095908) and by the European Molecular Biology Laboratory. The research leading to these results has received funding from the EU Seventh Framework Programme (FP7/2007-2013) under grant agreement (282510–BLUEPRINT).

Author information

Authors and Affiliations

Authors

Contributions

G.R.S.R. implemented the method, performed all analyses and drafted the manuscript. I.D. assisted with access to ENCODE data and suggested how to construct the control sets. E.Z. and P.F. contributed to the development of the method, manuscript writing and jointly directed the work.

Corresponding authors

Correspondence to Eleftheria Zeggini or Paul Flicek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–8 (PDF 1163 kb)

Supplementary Table 1

Summary annotation results for the SORT1 locus. (XLS 23 kb)

Supplementary Table 2

Summary annotation results for the TNFAIP3 locus. (XLS 25 kb)

Supplementary Table 3

Summary annotation results for the TCF7L2 locus. (XLS 18 kb)

Supplementary Table 4

Results from the gene-by-gene analysis of variants from a single individual showing the rank of the spike-in variant for each gene, and the number of background variants, using the classifier trained on variants matched by distance to the nearest TSS. (XLS 18 kb)

Supplementary Table 5

Statistics for enrichment/depletion for all annotations analyzed; methods are described in Online Methods. (XLS 47 kb)

Supplementary Software

Python software implementing the annotation pipeline and classifier, and the variant training sets used to train the classifier (ZIP 2119 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, G., Dunham, I., Zeggini, E. et al. Functional annotation of noncoding sequence variants. Nat Methods 11, 294–296 (2014). https://doi.org/10.1038/nmeth.2832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2832

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research