Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation

Abstract

Corticosterone facilitates hippocampal glutamate transmission, but the cellular pathways by which AMPA receptor (AMPAR) signaling is adjusted remain elusive. Single quantum-dot imaging in live rat hippocampal neurons revealed that corticosterone triggers, via distinct corticosteroid receptors, time-dependent increases in GluR2-AMPAR surface mobility and synaptic surface GluR2 content. Furthermore, corticosterone potentiates the increase of synaptic surface GluR2 contents by a chemical long-term potentiation stimulus, revealing the influence that corticosterone has on AMPAR trafficking.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Corticosterone (Cort) rapidly regulates GluR2-AMPAR surface trafficking and amplifies the GluR2-AMPAR synaptic content response to a chemical LTP stimulus via mineralocorticoid receptors (MRs).
Figure 2: Corticosterone (Cort) slowly increases by means of glucocorticoid receptors (GRs) surface GluR2-AMPAR content and diffusion and prevents synaptic AMPAR potentiation through lateral diffusion.

Similar content being viewed by others

References

  1. de Kloet, E.R., Joels, M. & Holsboer, F. Nat. Rev. Neurosci. 6, 463–475 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. McEwen, B.S. Physiol. Rev. 87, 873–904 (2007).

    Article  PubMed  Google Scholar 

  3. Joels, M. Trends Pharmacol. Sci. 27, 244–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Karst, H. et al. Proc. Natl. Acad. Sci. USA 102, 19204–19207 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Wiegert, O., Joels, M. & Krugers, H. Learn. Mem. 13, 110–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Karst, H. & Joels, M. J. Neurophysiol. 94, 3479–3486 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, J.J. & Diamond, D.M. Nat. Rev. Neurosci. 3, 453–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Malinow, R. & Malenka, R.C. Annu. Rev. Neurosci. 25, 103–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Groc, L. et al. J. Neurosci. 27, 12433–12437 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Groc, L. et al. Nat. Neurosci. 7, 695–696 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Lu, W. et al. Neuron 29, 243–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Heine, M. et al. Science 320, 201–205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu, H. et al. Cell 131, 160–173 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F.A. Stephenson for providing antibodies to NR1 subunit, R.L. Huganir for providing antibodies to GluR1 subunit, C. Breillat, B. Teissier and D. Bouchet for technical assistance, and G. Marsicano and F. Georges for critical reading of the manuscript. This work was supported by grants from the Centre National de la Recherche Scientifique, Conseil Régional d'Aquitaine, Ministère de la Recherche, Institut National de la Santé et de la Recherche Médicale, Fondation pour la Recherche Médicale, the Human Frontier Science Organization and Agence Nationale de la Recherche.

Author information

Authors and Affiliations

Authors

Contributions

L.G. and F.C. developed and supervised the project and conducted the experiments. L.G., D.C. and F.C. wrote the manuscript. L.G. conducted the data analyses.

Corresponding author

Correspondence to Laurent Groc.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Methods (PDF 1175 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groc, L., Choquet, D. & Chaouloff, F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat Neurosci 11, 868–870 (2008). https://doi.org/10.1038/nn.2150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2150

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing