Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synaptic activation of kainate receptors gates presynaptic CB1 signaling at GABAergic synapses

Abstract

Glutamate can control inhibitory synaptic transmission through activation of presynaptic kainate receptors. We found that glutamate released by train stimulation of Schaffer collaterals could lead to either short-term depression or short-term facilitation of inhibitory synaptic transmission in mouse CA1 pyramidal neurons, depending on the presence of cannabinoid type 1 (CB1) receptors on GABAergic afferents. The train-induced depression of inhibition (t-Di) required the mobilization of 2-arachidonoylglycerol through postsynaptic activation of metabotropic glutamate receptors and [Ca2+] rise. GluK1 (GluR5)-dependent depolarization of GABAergic terminals enabled t-Di by facilitating presynaptic CB1 signaling. Thus, concerted activation of presynaptic CB1 receptors and kainate receptors mediates short-term depression of inhibitory synaptic transmission. In contrast, in inhibitory connections expressing GluK1, but not CB1, receptors, train stimulation of Schaffer collaterals led to short-term facilitation. Thus, activation of kainate receptors by synaptically released glutamate gates presynaptic CB1 signaling, which in turn controls the direction of short-term heterosynaptic plasticity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GluK1-KARs mediate t-Di.
Figure 2: CB1 receptors are required for the expression of t-Di.
Figure 3: t-Di requires postsynaptic mobilization of 2-AG.
Figure 4: GluK1 KAR–dependent depolarization enhances the efficacy of CB1 signaling.
Figure 5: t-Di is present in unitary connections expressing CB1 receptors.
Figure 6: In the absence of ECS signaling, GluK1 KARs facilitate inhibitory transmission.

Similar content being viewed by others

References

  1. Pinheiro, P.S. & Mulle, C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat. Rev. Neurosci. (2008).

  2. Lerma, J. Kainate receptor physiology. Curr. Opin. Pharmacol. 6, 89–97 (2006).

    Article  CAS  Google Scholar 

  3. Pinheiro, P. & Mulle, C. Kainate receptors. Cell Tissue Res. 326, 457–482 (2006).

    Article  CAS  Google Scholar 

  4. Min, M.Y., Melyan, Z. & Kullmann, D.M. Synaptically released glutamate reduces gamma-aminobutyric acid (GABA)ergic inhibition in the hippocampus via kainate receptors. Proc. Natl. Acad. Sci. USA 96, 9932–9937 (1999).

    Article  CAS  Google Scholar 

  5. Jiang, L., Xu, J., Nedergaard, M. & Kang, J. A kainate receptor increases the efficacy of GABAergic synapses. Neuron 30, 503–513 (2001).

    Article  CAS  Google Scholar 

  6. Piomelli, D. The molecular logic of endocannabinoid signaling. Nat. Rev. Neurosci. 4, 873–884 (2003).

    Article  CAS  Google Scholar 

  7. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    Article  CAS  Google Scholar 

  8. Alger, B.E. Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog. Neurobiol. 68, 247–286 (2002).

    Article  CAS  Google Scholar 

  9. Maejima, T., Hashimoto, K., Yoshida, T., Aiba, A. & Kano, M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron 31, 463–475 (2001).

    Article  CAS  Google Scholar 

  10. Ohno-Shosaku, T. et al. Endocannabinoid signaling triggered by NMDA receptor-mediated calcium entry into rat hippocampal neurons. J. Physiol. (Lond.) 584, 407–418 (2007).

    Article  CAS  Google Scholar 

  11. Varma, N., Carlson, G.C., Ledent, C. & Alger, B.E. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J. Neurosci. 21, RC188 (2001).

    Article  CAS  Google Scholar 

  12. Bender, V.A., Bender, K.J., Brasier, D.J. & Feldman, D.E. Two coincidence detectors for spike timing–dependent plasticity in somatosensory cortex. J. Neurosci. 26, 4166–4177 (2006).

    Article  CAS  Google Scholar 

  13. Sjöström, P.J., Turrigiano, G.G. & Nelson, S.B. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39, 641–654 (2003).

    Article  Google Scholar 

  14. Cadas, H., Gaillet, S., Beltramo, M., Venance, L. & Piomelli, D. Biosynthesis of an endogenous cannabinoid precursor in neurons and its control by calcium and cAMP. J. Neurosci. 16, 3934–3942 (1996).

    Article  CAS  Google Scholar 

  15. Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    Article  CAS  Google Scholar 

  16. Monory, K. et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

    Article  CAS  Google Scholar 

  17. Frerking, M., Petersen, C.C. & Nicoll, R.A. Mechanisms underlying kainate receptor–mediated disinhibition in the hippocampus. Proc. Natl. Acad. Sci. USA 96, 12917–12922 (1999).

    Article  CAS  Google Scholar 

  18. Bureau, I., Bischoff, S., Heinemann, S.F. & Mulle, C. Kainate receptor–mediated responses in the CA1 field of wild-type and GluR6-deficient mice. J. Neurosci. 19, 653–663 (1999).

    Article  CAS  Google Scholar 

  19. Paternain, A.V., Herrera, M.T., Nieto, M.A. & Lerma, J. GluR5 and GluR6 kainate receptor subunits coexist in hippocampal neurons and coassemble to form functional receptors. J. Neurosci. 20, 196–205 (2000).

    Article  CAS  Google Scholar 

  20. Monory, K. et al. Genetic dissection of behavioral and autonomic effects of Delta(9)-tetrahydrocannabinol in mice. PLoS Biol. 5, e269 (2007).

    Article  Google Scholar 

  21. Tsou, K., Brown, S., Sanudo-Pena, M.C., Mackie, K. & Walker, J.M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83, 393–411 (1998).

    Article  CAS  Google Scholar 

  22. Pawelzik, H., Hughes, D.I. & Thomson, A.M. Physiological and morphological diversity of immunocytochemically defined parvalbumin- and cholecystokinin-positive interneurones in CA1 of the adult rat hippocampus. J. Comp. Neurol. 443, 346–367 (2002).

    Article  Google Scholar 

  23. Wilson, R.I. & Nicoll, R.A. Endogenous cannabinoids mediate retrograde signaling at hippocampal synapses. Nature 410, 588–592 (2001).

    Article  CAS  Google Scholar 

  24. Bacci, A., Huguenard, J.R. & Prince, D.A. Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431, 312–316 (2004).

    Article  CAS  Google Scholar 

  25. Ali, A.B. Presynaptic Inhibition of GABAA receptor-mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus. J. Neurophysiol. 98, 861–869 (2007).

    Article  CAS  Google Scholar 

  26. Luján, R., Nusser, Z., Roberts, J.D., Shigemoto, R. & Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 8, 1488–1500 (1996).

    Article  Google Scholar 

  27. Földy, C., Neu, A., Jones, M.V. & Soltesz, I. Presynaptic, activity-dependent modulation of cannabinoid type 1 receptor-mediated inhibition of GABA release. J. Neurosci. 26, 1465–1469 (2006).

    Article  Google Scholar 

  28. Mulle, C. et al. Subunit composition of kainate receptors in hippocampal interneurons. Neuron 28, 475–484 (2000).

    Article  CAS  Google Scholar 

  29. Buzsáki, G. Theta oscillations in the hippocampus. Neuron 33, 325–340 (2002).

    Article  Google Scholar 

  30. Freund, T.F. & Katona, I. Perisomatic inhibition. Neuron 56, 33–42 (2007).

    Article  CAS  Google Scholar 

  31. Katona, I. et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19, 4544–4558 (1999).

    Article  CAS  Google Scholar 

  32. Marsicano, G. & Lutz, B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225 (1999).

    Article  CAS  Google Scholar 

  33. Chevaleyre, V. & Castillo, P.E. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38, 461–472 (2003).

    Article  CAS  Google Scholar 

  34. Sun, H.Y., Bartley, A.F. & Dobrunz, L.E. Calcium-permeable presynaptic kainate receptors involved in excitatory short-term facilitation onto somatostatin interneurons during natural stimulus patterns. J. Neurophysiol. 101, 1043–1055 (2009).

    Article  CAS  Google Scholar 

  35. Alle, H. & Geiger, J.R. Combined analog and action potential coding in hippocampal mossy fibers. Science 311, 1290–1293 (2006).

    Article  CAS  Google Scholar 

  36. Cossart, R., Esclapez, M., Hirsch, J.C., Bernard, C. & Ben-Ari, Y. GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells. Nat. Neurosci. 1, 470–478 (1998).

    Article  CAS  Google Scholar 

  37. Frerking, M., Malenka, R. & Nicoll, R. Synaptic activation of KARs on hippocampal interneurons. Nat. Neurosci. 1, 479–486 (1998).

    Article  CAS  Google Scholar 

  38. Christensen, J.K., Paternain, A.V., Selak, S., Ahring, P.K. & Lerma, J. A mosaic of functional kainate receptors in hippocampal interneurons. J. Neurosci. 24, 8986–8993 (2004).

    Article  CAS  Google Scholar 

  39. Di Marzo, V. et al. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature 372, 686–691 (1994).

    Article  CAS  Google Scholar 

  40. Chevaleyre, V. & Castillo, P.E. Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 43, 871–881 (2004).

    Article  CAS  Google Scholar 

  41. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  Google Scholar 

  42. Hudson, B.D., Hebert, T.E. & Kelly, M.E. Ligand and heterodimer directed signaling of the CB1 cannabinoid receptor. Mol. Pharmacol. published online, doi:10.1124/mol.109.060251 (16 October 2009).

  43. Varma, N. et al. Presynaptic factors in the regulation of DSI expression in hippocampus. Neuropharmacology 43, 550–562 (2002).

    Article  CAS  Google Scholar 

  44. Heifets, B.D., Chevaleyre, V. & Castillo, P.E. Interneuron activity controls endocannabinoid-mediated presynaptic plasticity through calcineurin. Proc. Natl. Acad. Sci. USA 105, 10250–10255 (2008).

    Article  CAS  Google Scholar 

  45. Edwards, D.A., Zhang, L. & Alger, B.E. Metaplastic control of the endocannabinoid system at inhibitory synapses in hippocampus. Proc. Natl. Acad. Sci. USA 105, 8142–8147 (2008).

    Article  CAS  Google Scholar 

  46. Glickfeld, L.L. & Scanziani, M. Distinct timing in the activity of cannabinoid-sensitive and cannabinoid-insensitive basket cells. Nat. Neurosci. 9, 807–815 (2006).

    Article  CAS  Google Scholar 

  47. Klausberger, T. & Somogyi, P. Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321, 53–57 (2008).

    Article  CAS  Google Scholar 

  48. Sachidhanandam, S., Blanchet, C., Jeantet, Y., Cho, Y.H. & Mulle, C. Kainate receptors act as conditional amplifiers of spike transmission at hippocampal mossy fiber synapses. J. Neurosci. 29, 5000–5008 (2009).

    Article  CAS  Google Scholar 

  49. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    Article  CAS  Google Scholar 

  50. Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the laboratories of G. Marsicano and C. Mulle for fruitful discussions, P. Pinheiro for help during the experiments and A. Vimeney, D. Gonzales and the Genotyping Facility of the NeuroCentre Magendie for mouse genotyping. We are grateful to K. Mackie (Indiana University) for providing the CB1 antiserum. We thank J.P. Mazat, D. Commenges, C. Schwierz and L. Rosinus for help with statistical analyses. We thank K. Nave, J. Rubenstein, M. Ekker and G. Schütz for the use of Cre-expressing mouse lines. We also thank F. Chaouloff and N. Rebola for comments on the manuscript. This work was supported by an AVENIR grant of the Institut National de la Santé et de la Recherche Médicale (INSERM) in partnership with the Foundation Bettencourt-Schueller (G.M.), by the Agence National de la Recherche (ANR-06-NEUR-043-01 to G.M. and ANR-05-NEUR-033-01 to C.M.), by the Conseil Régional d'Aquitaine (G.M. and C.M.), by the Fundação para a Ciência e a Tecnologia, Portugal (J.L.), the Centre National de la Recherche Scientifique (C.M.) and European Commission Coordination Action Network of European Neuroscience Institutes (ENINET) (LSHM-CT-2005-19063 to G.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. conducted the electrophysiological experiments, A.C. carried out the anatomical studies, M.C. performed the glutamate uncaging experiments and F.C. carried out the biochemical assays. J.L., C.M. and G.M. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Christophe Mulle.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–3 (PDF 1600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lourenço, J., Cannich, A., Carta, M. et al. Synaptic activation of kainate receptors gates presynaptic CB1 signaling at GABAergic synapses. Nat Neurosci 13, 197–204 (2010). https://doi.org/10.1038/nn.2481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing