Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The endocannabinoid system controls food intake via olfactory processes

Abstract

Hunger arouses sensory perception, eventually leading to an increase in food intake, but the underlying mechanisms remain poorly understood. We found that cannabinoid type-1 (CB1) receptors promote food intake in fasted mice by increasing odor detection. CB1 receptors were abundantly expressed on axon terminals of centrifugal cortical glutamatergic neurons that project to inhibitory granule cells of the main olfactory bulb (MOB). Local pharmacological and genetic manipulations revealed that endocannabinoids and exogenous cannabinoids increased odor detection and food intake in fasted mice by decreasing excitatory drive from olfactory cortex areas to the MOB. Consistently, cannabinoid agonists dampened in vivo optogenetically stimulated excitatory transmission in the same circuit. Our data indicate that cortical feedback projections to the MOB crucially regulate food intake via CB1 receptor signaling, linking the feeling of hunger to stronger odor processing. Thus, CB1 receptor–dependent control of cortical feedback projections in olfactory circuits couples internal states to perception and behavior.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CB1 receptor is expressed in centrifugal glutamatergic projections to the MOB.
Figure 2: Endocannabinoid signaling in the MOB is activated by fasting and promotes food intake by dampening glutamatergic transmission.
Figure 3: CB1 receptors on GCL-projecting feedback glutamatergic cortical neurons are necessary for fasting-induced hyperphagia.
Figure 4: CB1 receptors on GCL-projecting feedback glutamatergic cortical neurons are sufficient for fasting-induced hyperphagia.
Figure 5: Centrifugal glutamatergic transmission in the MOB mediates fasting-induced food intake and the hyperphagic effect of THC in C57BL/6N mice.
Figure 6: CB1 receptor activation decreases olfactory habituation in fasted mice.
Figure 7: CB1 receptor signaling in the MOB enhances olfactory detection in fasted mice and proportionally promotes food intake.
Figure 8: CB1 receptors control synaptic activity in the corticofugal system.

Similar content being viewed by others

References

  1. Kato, H.K., Chu, M.W., Isaacson, J.S. & Komiyama, T. Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron 76, 962–975 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meissner, K. & Wittmann, M. Body signals, cardiac awareness, and the perception of time. Biol. Psychol. 86, 289–297 (2011).

    Article  PubMed  Google Scholar 

  3. Bechara, A., Damasio, H., Tranel, D. & Damasio, A.R. The Iowa Gambling Task and the somatic marker hypothesis: some questions and answers. Trends Cogn. Sci. 9, 159–162; discussion 162–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Goetzl, F.R. & Stone, F. Diurnal variations in acuity of olfaction and food intake. Gastroenterology 9, 444–453 (1947).

    CAS  PubMed  Google Scholar 

  5. Cameron, J.D., Goldfield, G.S. & Doucet, E. Fasting for 24 h improves nasal chemosensory performance and food palatability in a related manner. Appetite 58, 978–981 (2012).

    Article  PubMed  Google Scholar 

  6. Julliard, A.K. et al. Changes in rat olfactory detection performance induced by orexin and leptin mimicking fasting and satiation. Behav. Brain Res. 183, 123–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Tong, J. et al. Ghrelin enhances olfactory sensitivity and exploratory sniffing in rodents and humans. J. Neurosci. 31, 5841–5846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Albrecht, J. et al. Olfactory detection thresholds and pleasantness of a food-related and a non-food odor in hunger and satiety. Rhinology 47, 160–165 (2009).

    CAS  PubMed  Google Scholar 

  9. DiPatrizio, N.V. & Piomelli, D. The thrifty lipids: endocannabinoids and the neural control of energy conservation. Trends Neurosci. 35, 403–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pagotto, U., Marsicano, G., Cota, D., Lutz, B. & Pasquali, R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev. 27, 73–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Bellocchio, L. et al. Bimodal control of stimulated food intake by the endocannabinoid system. Nat. Neurosci. 13, 281–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Tart, C.T. Marijuana intoxication common experiences. Nature 226, 701–704 (1970).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Z.J., Sun, L. & Heinbockel, T. Cannabinoid receptor–mediated regulation of neuronal activity and signaling in glomeruli of the main olfactory bulb. J. Neurosci. 32, 8475–8479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawamura, Y. et al. The CB1 cannabinoid receptor is the major cannabinoid receptor at excitatory presynaptic sites in the hippocampus and cerebellum. J. Neurosci. 26, 2991–3001 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marsicano, G. & Kuner, R. Anatomical distribution of receptors, ligands and enzymes in the brain and the spinal cord: circuitries and neurochemistry. in Cannabinoids and the Brain (ed. Kofalvi, A.) 161–202 (Springer, New York, 2008).

  16. Steindel, F. et al. Neuron type–specific cannabinoid-mediated G protein signaling in mouse hippocampus. J. Neurochem. 124, 795–807 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Davis, B.J. & Macrides, F. The organization of centrifugal projections from the anterior olfactory nucleus, ventral hippocampal rudiment, and piriform cortex to the main olfactory bulb in the hamster: an autoradiographic study. J. Comp. Neurol. 203, 475–493 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Shepherd, G.M.C.W.R. & Greer, C.A. Olfactory bulb. in The Synaptic Organization of the Brain (ed. Shepherd, G.M.) 165–216 (Oxford University Press, Oxford (UK), 2004).

  19. Markopoulos, F., Rokni, D., Gire, D.H. & Murthy, V.N. Functional properties of cortical feedback projections to the olfactory bulb. Neuron 76, 1175–1188 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boyd, A.M., Sturgill, J.F., Poo, C. & Isaacson, J.S. Cortical feedback control of olfactory bulb circuits. Neuron 76, 1161–1174 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Marinelli, S., Pacioni, S., Cannich, A., Marsicano, G. & Bacci, A. Self-modulation of neocortical pyramidal neurons by endocannabinoids. Nat. Neurosci. 12, 1488–1490 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Marsicano, G. & Lutz, B. Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur. J. Neurosci. 11, 4213–4225 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Monory, K. et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51, 455–466 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kano, M., Ohno-Shosaku, T., Hashimotodani, Y., Uchigashima, M. & Watanabe, M. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Piomelli, D. The molecular logic of endocannabinoid signaling. Nat. Rev. Neurosci. 4, 873–884 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Marsicano, G. et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 302, 84–88 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Monory, K. et al. Genetic dissection of behavioural and autonomic effects of Delta(9)-tetrahydrocannabinol in mice. PLoS Biol. 5, e269 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ruehle, S. et al. Cannabinoid CB1 receptor in dorsal telencephalic glutamatergic neurons: distinctive sufficiency for hippocampus-dependent and amygdala-dependent synaptic and behavioral functions. J. Neurosci. 33, 10264–10277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Krashes, M.J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rogan, S.C. & Roth, B.L. Remote control of neuronal signaling. Pharmacol. Rev. 63, 291–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, M. & Crawley, J.N. Simple behavioral assessment of mouse olfaction. Curr. Protoc. Neurosci. Ch. 8, Unit 8 24 (2009).

  34. Witt, R.M., Galligan, M.M., Despinoy, J.R. & Segal, R. Olfactory behavioral testing in the adult mouse. J. Vis. Exp. published online, 10.3791/949 (28 January 2009).

  35. Sánchez-Andrade, G., James, B.M. & Kendrick, K.M. Neural encoding of olfactory recognition memory. J. Reprod. Dev. 51, 547–558 (2005).

    Article  PubMed  Google Scholar 

  36. Mor, M. et al. Cyclohexylcarbamic acid 3′- or 4′-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure-activity relationships, and molecular modeling studies. J. Med. Chem. 47, 4998–5008 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jacob, S., McClintock, M.K., Zelano, B. & Ober, C. Paternally inherited HLA alleles are associated with women's choice of male odor. Nat. Genet. 30, 175–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Zhou, W., Jiang, Y., He, S. & Chen, D. Olfaction modulates visual perception in binocular rivalry. Curr. Biol. 20, 1356–1358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Palouzier-Paulignan, B. et al. Olfaction under metabolic influences. Chem. Senses 37, 769–797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brisbois, T.D., Hutton, J.L., Baracos, V.E. & Wismer, W.V. Taste and smell abnormalities as an independent cause of failure of food intake in patients with advanced cancer–an argument for the application of sensory science. J. Palliat. Care 22, 111–114 (2006).

    Article  PubMed  Google Scholar 

  42. Aschenbrenner, K., Scholze, N., Joraschky, P. & Hummel, T. Gustatory and olfactory sensitivity in patients with anorexia and bulimia in the course of treatment. J. Psychiatr. Res. 43, 129–137 (2008).

    Article  PubMed  Google Scholar 

  43. Marsicano, G. & Lafenetre, P. Roles of the endocannabinoid system in learning and memory. Curr. Top. Behav. Neurosci. 1, 201–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Puighermanal, E. et al. Cannabinoid modulation of hippocampal long-term memory is mediated by mTOR signaling. Nat. Neurosci. 12, 1152–1158 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Maldonado, R., Valverde, O. & Berrendero, F. Involvement of the endocannabinoid system in drug addiction. Trends Neurosci. 29, 225–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paxinos, G. & Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates (Academic Press, San Diego, 2001).

  48. Neville, K.R. & Haberly, L.B. Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J. Neurophysiol. 90, 3921–3930 (2003).

    Article  PubMed  Google Scholar 

  49. Rinberg, D. & Gelperin, A. Olfactory neuronal dynamics in behaving animals. Semin. Cell Dev. Biol. 17, 454–461 (2006).

    Article  PubMed  Google Scholar 

  50. McNamara, A.M., Magidson, P.D., Linster, C., Wilson, D.A. & Cleland, T.A. Distinct neural mechanisms mediate olfactory memory formation at different timescales. Learn. Mem. 15, 117–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fadool, D.A. et al. Kv1.3 channel gene-targeted deletion produces “Super-Smeller Mice” with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron 41, 389–404 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferguson, J.N. et al. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 25, 284–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Lourenço, J., Matias, I., Marsicano, G. & Mulle, C. Pharmacological activation of kainate receptors drives endocannabinoid mobilization. J. Neurosci. 31, 3243–3248 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bellocchio, L. et al. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade. Proc. Natl. Acad. Sci. USA 110, 4786–4791 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Gonzales, N. Aubailly and all of the personnel of the Animal Facility of the NeuroCentre Magendie for mouse care and genotyping, A. Desprez for help with the odor task set-up, D. Herrera and S. Rahayel (NutriBrain School 2012) for help with some experiments, all of the members of the Marsicano laboratory for useful discussions, A. Bacci, D. Cota, V. Deroche and M. Valley for critically reading the manuscript, and K. Deisseroth (Stanford University) and B.L. Roth (University of North Carolina) for providing the plasmids coding for ChR2 and DREADD, respectively. This work was supported by INSERM (G.M.), EU-Fp7 (REPROBESITY, HEALTH-F2-2008-223713, G.M.), European Research Council (ENDOFOOD, ERC-2010-StG-260515, G.M.), Fondation pour la Recherche Medicale (FRM-DRM-20101220445, G.M.), Region Aquitaine (G.M.), LABEX BRAIN (ANR-10-LABX-43), Fyssen Foundation (E.S.-G.), EMBO Post-doc Fellowship (L.B.), RTA, I.S. Carlos III (RD12/0028/0004, P.G.), Basque Country Government BCG IT764-13 (P.G.), University of the Basque Country UFI11/41 (P.G.), MINECO BFU2012-33334 (P.G.), Postdoctoral Specialization Contract from the University of the Basque Country UPV/EHU (L.R.), MINECO SAF2012-35759 (M.G.), Deutsche Forschungsgemeinschaft (SFB-TRR 58, B.L. and H.-C.P.), CONACyT (E.S.-G.). The Lledo laboratory is part of the École des Neurosciences de Paris Ile-de-France network, a member of the Bio-Psy Labex and is supported partially by “AG2R-La-Mondiale”.

Author information

Authors and Affiliations

Authors

Contributions

E.S.-G., G.F., P.-M.L. and G.M. designed the experiments. E.S.-G., L.B., L.R., G.L., C.M., M.B., S.R., F.R., T.D., I.M., T.W., A.C., A.N., A.W., A.P.C., D.V. and P.V. performed the experiments. H.-C.P. provided reagents. E.S.-G., L.B., L.R., G.L., F.M., B.L., M.G., C.Q., H.G., G.F., P.-M.L., P.G. and G.M. analyzed the data. E.S.-G., and G.M. wrote the manuscript. All of the authors edited the manuscript.

Corresponding author

Correspondence to Giovanni Marsicano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Expression of CB1 receptor mRNA in olfactory areas.

(a) Representative coronal pictures of fluorescent in situ hybridization (FISH) of CB1 receptor mRNA expression (red) in the MOB. (b-f) Detailed analysis of CB1 receptor mRNA in different layers of the MOB. In wild-type mice (n=3), CB1 mRNA (green) is co-expressed with mRNA coding for tyrosine hydroxylase (TH, red, b) and GAD 65 (red, c) in the glomerular layer (GL, white arrows), but very sparse co-localization with GAD 65 was found in the granular cell layer (GCL, white arrows, d). No co-expression with the vesicular glutamate transporter 1 (VGluT1) was detected in any layer (e,f). Note that CB1 mRNA expression is not changed in Glu-CB1–/–mice (n=3) and it is absent in CB1–/– mice (n=3).

Supplementary Figure 2 Tissue levels of anandamide

(a) and (b) 2-AG in the hypothalamus and cerebellum of free-fed (Control) and 24-h fasted C57BL/6-N mice.

Source data

Supplementary Figure 3 Trypan blue injection in the MOB.

The volume and rate of injection was exactly the same as for intra-MOB pharmacological treatments. Note the restriction of diffusion to the granule cell layer of the MOB. GCL, granule cell layer; GL, glomerular layer; MCL, mitral cell layer

Supplementary Figure 4 CB1 receptor semi-quantification

(a) in the IPL of CB1-flox AAV-Ctrl (AAV-Ctrl) and AON/APC-CB1–/– mice (CB1-flox AAV-Cre). (b) Correlation between the levels of CB1 protein expression in the IPL and food intake in CB1-flox-AAV-Ctrl (black symbols) and AON/APC-CB1–/– mice (blue symbols).

Source data

Supplementary Figure 5

(a,b) Expression of the CB1 receptor protein in the AON (a) and the hippocampus (b) of wild-type (WT, n=3), Stop-CB1 (n=3), CB1-RS (n=3) and Glu-CB1-RS mice (n=3). Note the absence of CB1 receptor protein in Stop-CB1 mice and its complete rescue in global CB1-RS mice. According to the low levels of CB1 receptors on cortical glutamatergic neurons, Glu-CB1-RS mice display only slightly above-background staining. The presence of abundant CB1 receptor protein in the inner molecular layer of the dentate gyrus (b) and in the GCL/MOB (compare with Figure 4a of main text) confirms the presence of abundant receptors at terminals of hippocampal mossy cells, and at terminals of centrifugal feedback projections of olfactory cortical areas. (c) Percentage of increase in food intake of CB1-RS, Glu-CB1-RS and AON-CB1-RS mice as compared to respective Stop-CB1 mice.

Source data

Supplementary Figure 6 Activation of centrifugal glutamatergic transmission to the GCL/MOB by the Gq-DREADD approach.

(a) Representative coronal pictures of the anterior olfactory nucleus (AON) and the main olfactory bulb (MOB) from mice injected in the AON with rAAV CaMK-DREAAD-mCherry. Due to the expression of DREADD-mCherry exclusively at somatic level, the fluorescent signal is detected only in the AON and not in the MOB, where infected neurons project (compare with Figure 5c of main text). (b) Phospo-CREB immunohistochemistry in mice injected with rAAV CaMK-DREAAD in the AON and injected with saline (veh) or 1 mg/kg of CNO 30 minutes before sacrifice. Note the activation of both MOB and AON (dotted lines) following DREADD stimulation with CNO. (c) Food intake in control mice injected with rAAV CaMK-mCherry in the AON (AON-mCherry) after administration of saline (VEH) or 1mg/kg CNO.

Source data

Supplementary Figure 7 Absolute exploration data of the olfactory habituation experiments depicted in Figure 6c and d of main text.

(a,b) The inhibitory effect of THC on olfactory habituation is abolished in Glu-CB1–/– mice (a) and by local intra-MOB injection of DCS (b).

Source data

Supplementary Figure 8

(a) Food intake and AUC of odor detection threshold values after different doses of THC or (b) URB597. Note that positive correlations between food intake and olfactory detection were found only with the hyperphagic doses of THC (1mg/kg) and URB597 (10mg/kg).

Source data

Supplementary Figure 9 The endocannabinoid system controls fasting-induced food intake via olfactory processes.

Schematic representation of the putative mechanisms mediating the (endo)cannabinoids effects on olfactory circuits of fasted mice. Under basal conditions (left picture), low endocannabinoid activation of CB1 receptors on centrifugal terminals contributes maintaining a certain level of activity of inhibitory granule cells (orange cloud) in the GCL/MOB, thereby likely providing basal levels of olfactory activity (small nose purple cloud) and food intake (small food in the thought balloon). Upon fasting (right picture), increased endocannabinoids (green cloud) or THC administration activate CB1 receptors in the GCL/MOB leading to a decrease of centrifugal glutamatergic transmission (blue lines) and eventually to a reduction of GABAergic activity in the GCL. The final impact of these changes is an enhancement of olfactory detection (large nose purple cloud) and hyperphagia (large food in thought balloon). This phenomenon is likely triggered by orexigenic signals associated with fasting (brown arrows). GCL, granule cell layer; GL, glomerular layer; MCL, mitral cell layer; OSN, olfactory sensory neurons.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–3 (PDF 9484 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soria-Gómez, E., Bellocchio, L., Reguero, L. et al. The endocannabinoid system controls food intake via olfactory processes. Nat Neurosci 17, 407–415 (2014). https://doi.org/10.1038/nn.3647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing