Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization

Abstract

This protocol presents the peptide incorporation of environment-sensitive fluorophores derived from the dimethylaminophthalimide family. The procedure utilizes anhydride precursors of 4-dimethylaminophthalimide (4-DMAP) or 6-dimethylaminonaphthalimide (6-DMN), whose syntheses are described in a related protocol from these authors. In this protocol, the fluorophores are directly incorporated after solid-phase peptide synthesis (SPPS) via on-resin derivatization of peptides prepared using commercially available diamino acids, which are Alloc-protected on the side-chain amino group. The time required to complete the procedure depends on the size and number of peptides targeted. As an alternative to this approach, the corresponding fluorescent amino acids can be obtained in an Fmoc-protected form for convenient use as building blocks in SPPS. This option is described in a related protocol by these authors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3: General approaches for the insertion of the environment-sensitive fluorophores 6-dimethylaminonaphthalimide (6-DMN) or 4-dimethylaminophthalimide (4-DMAP) into peptides (illustrated here with 6-DMN insertion).
Figure 4
Figure 5: HPLC trace of Ac-ETPpYSHP(6-DMNA)G-NH2 monitored at 228 nm [YMC C18, ODS-A 5/120, 250 × 4.6 mm2; gradient: 5% acetonitrile (CH3CN) containing 0.1% trifluoroacetic acid (TFA) for 5 min followed by 5–35% CH3CN containing 0.1% TFA over 45 min in water containing 0.1% TFA at a flow rate of 1 ml min−1].
Figure 6: UV absorption spectra.
Figure 7: Normalized fluorescence emission spectra.
Figure 8: Comparison of maximal fluorescence intensity of environment-sensitive paxillin-derived peptides (20 μM) in PBS versus dioxane.

Similar content being viewed by others

References

  1. Shults, M.D. & Imperiali, B. Versatile fluorescence probes of protein kinase activity. J. Am. Chem. Soc. 125, 14248–14249 (2003).

    Article  CAS  Google Scholar 

  2. Chen, C.-A., Yeh, R.-H., Yan, X. & Lawrence, D.S. Biosensors of protein kinase action: from in vitro assays to living cells. Biochim. Biophys. Acta 1697, 39–51 (2004).

    Article  CAS  Google Scholar 

  3. Lawrence, D.S. & Wang, Q. Seeing is believing: peptide-based fluorescent sensors of protein tyrosine kinase activity. Chembiochem 8, 373–378 (2007).

    Article  CAS  Google Scholar 

  4. Eftink, M.R. & Shastry, M.C. Fluorescence methods for studying kinetics of protein-folding reactions. Methods Enzymol. 278, 258–286 (1997).

    Article  CAS  Google Scholar 

  5. Heyduk, T. Measuring protein conformational changes by FRET/LRET. Curr. Opin. Biotechnol. 13, 292–296 (2002).

    Article  CAS  Google Scholar 

  6. Truong, K. & Ikura, M. The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr. Opin. Struct. Biol. 11, 573–578 (2001).

    Article  CAS  Google Scholar 

  7. Jameson, D.M., Croney, J.C. & Moens, P.D. Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol. 360, 1–43 (2003).

    Article  CAS  Google Scholar 

  8. Kellmann, A. Intersystem crossing and internal conversion quantum yields of acridine in polar and nonpolar solvents. J. Phys. Chem. 81, 1195–1198 (1977).

    Article  CAS  Google Scholar 

  9. Seixas de Melo, J.S., Becker, R.S. & Macanita, A.L. Photophysical behavior of coumarins as a function of substitution and solvent: experimental evidence for the existence of a lowest lying 1(n,π*) state. J. Phys. Chem. 98, 6054–6058 (1994).

    Article  CAS  Google Scholar 

  10. Uchiyama, S., Takehira, K., Yoshihara, T., Tobita, S. & Ohwada, T. Environment-sensitive fluorophore emitting in protic environments. Org. Lett. 8, 5869–5872 (2006).

    Article  CAS  Google Scholar 

  11. Valeur, B. Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, Baden-Württemberg, Germany, 2002).

  12. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Springer, New York, 2006).

    Book  Google Scholar 

  13. Weber, G. & Farris, F.J. Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18, 3075–3078 (1979).

    Article  CAS  Google Scholar 

  14. Cohen, B.E. et al. Probing protein electrostatics with a synthetic fluorescent amino acid. Science 296, 1700–1703 (2002).

    Article  CAS  Google Scholar 

  15. Nguyen, A.H., Nguyen, V.T., Kamio, Y. & Higuchi, H. Single-molecule visualization of environment-sensitive fluorophores inserted into cell membranes by staphylococcal gamma-hemolysin. Biochemistry 45, 2570–2576 (2006).

    Article  CAS  Google Scholar 

  16. Chen, H. et al. [Aladan3]TIPP: a fluorescent δ-opioid antagonist with high δ-receptor binding affinity and δ selectivity. Biopolymers 80, 325–331 (2005).

    Article  CAS  Google Scholar 

  17. Weber, G. Polarization of the fluorescence of macromolecules. II. Fluorescent conjugates of ovalbumin and bovine serum albumin. Biochem. J. 51, 155–167 (1952).

    Article  CAS  Google Scholar 

  18. Turner, J.H. & Raymond, J.R. Interaction of calmodulin with the serotonin 5-hydroxytryptamine2A receptor. A putative regulator of G protein coupling and receptor phosphorylation by protein kinase C. J. Biol. Chem. 280, 30741–30750 (2005).

    Article  CAS  Google Scholar 

  19. Pletneva, E.V., Gray, H.B. & Winkler, J.R. Snapshots of cytochrome c folding. Proc. Natl. Acad. Sci. USA 102, 18397–18402 (2005).

    Article  CAS  Google Scholar 

  20. Summerer, D. et al. A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785–9789 (2006).

    Article  CAS  Google Scholar 

  21. Backovic, M., Stratikos, E., Lawrence, D.A. & Gettins, P.G. Structural similarity of the covalent complexes formed between the serpin plasminogen activator inhibitor-1 and the arginine-specific proteinases trypsin, LMW u-PA, HMW u-PA, and t-PA: use of site-specific fluorescent probes of local environment. Protein Sci. 11, 1182–1191 (2002).

    Article  CAS  Google Scholar 

  22. Noble, J.E., Ganju, P. & Cass, A.E. Fluorescent peptide probes for high-throughput measurement of protein phosphatases. Anal. Chem. 75, 2042–2047 (2003).

    Article  CAS  Google Scholar 

  23. Sugimoto, K. et al. Novel real-time sensors to quantitatively assess in vivo inositol 1,4,5-trisphosphate production in intact cells. Chem. Biol. 11, 475–485 (2004).

    Article  CAS  Google Scholar 

  24. Renard, M. & Bedouelle, H. Improving the sensitivity and dynamic range of reagentless fluorescent immunosensors by knowledge-based design. Biochemistry 43, 15453–15462 (2004).

    Article  CAS  Google Scholar 

  25. Shi, Z.D. et al. Utilization of a nitrobenzoxadiazole (NBD) fluorophore in the design of a Grb2 SH2 domain-binding peptide mimetic. Bioorg. Med. Chem. Lett. 15, 1385–1388 (2005).

    Article  CAS  Google Scholar 

  26. Saroja, G., Soujanya, T., Ramachandram, B. & Samanta, A. 4-Aminophthalimide derivatives as environment-sensitive probes. J. Fluoresc. 8, 405–410 (1998).

    Article  CAS  Google Scholar 

  27. Krystkowiak, E., Dobek, K. & Maciejewski, A. Origin of the strong effect of protic solvents on the emission spectra, quantum yield of fluorescence and fluorescence lifetime of 4-aminophthalimide. Role of hydrogen bonds in deactivation of S1-4-aminophthalimide. J. Photoch. Photobio. A 184, 250–264 (2006).

    Article  CAS  Google Scholar 

  28. Vázquez, M.E., Blanco, J.B. & Imperiali, B. Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. J. Am. Chem. Soc. 127, 1300–1306 (2005).

    Article  Google Scholar 

  29. Sainlos, M. & Imperiali, B. Tools for investigating peptide-protein interactions: synthesis of anhydride precursors of the environment-sensitive fluorophores 4-DMAP and 6-DMN. Nat. Protoc. 2, 3219–3225 (2007).

    Article  CAS  Google Scholar 

  30. Eugenio Vazquez, M., Rothman, D.M. & Imperiali, B. A new environment-sensitive fluorescent amino acid for Fmoc-based solid phase peptide synthesis. Org. Biomol. Chem. 2, 1965–1966 (2004).

    Article  CAS  Google Scholar 

  31. Venkatraman, P. et al. Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nat. Chem. Biol. 3, 222–228 (2007).

    Article  CAS  Google Scholar 

  32. Vázquez, M.E. et al. 6-N,N-Dimethylamino-2,3-naphthalimide: a new environment-sensitive fluorescent probe in δ- and μ-selective opioid peptides. J. Med. Chem. 49, 3653–3658 (2006).

    Article  Google Scholar 

  33. Pauptit, R.A. et al. NMR trial models: experiences with the colicin immunity protein Im7 and the p85α C-terminal SH2-peptide complex. Acta Crystallogr. D 57, 1397–1404 (2001).

    Article  CAS  Google Scholar 

  34. Donaldson, L.W., Gish, G., Pawson, T., Kay, L.E. & Forman-Kay, J.D. Structure of a regulatory complex involving the Abl SH3 domain, the Crk SH2 domain, and a Crk-derived phosphopeptide. Proc. Natl. Acad. Sci. USA 99, 14053–14058 (2002).

    Article  CAS  Google Scholar 

  35. Sheng, M. & Sala, C. PDZ domains and the organization of supramolecular complexes. Annu. Rev. Neurosci. 24, 1–29 (2001).

    Article  CAS  Google Scholar 

  36. Appleton, B.A. et al. Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity. J. Biol. Chem. 281, 22312–22320 (2006).

    Article  CAS  Google Scholar 

  37. Sainlos, M. & Imperiali, B. Tools for investigating peptide-protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach. Nat. Protoc. 2, 3210–3218 (2007).

    Article  CAS  Google Scholar 

  38. Hachmann, J. & Lebl, M. Alternative to piperidine in Fmoc solid-phase synthesis. J. Comb. Chem. 8, 149 (2006).

    Article  CAS  Google Scholar 

  39. Wade, J.D., Bedford, J., Sheppard, R.C. & Tregear, G.W. DBU as an Nα-deprotecting reagent for the fluorenylmethoxycarbonyl group in continuous flow solid-phase peptide synthesis. Pept. Res. 4, 194–199 (1991).

    CAS  Google Scholar 

  40. Tickler, A.K., Barrow, C.J. & Wade, J.D. Improved preparation of amyloid-β peptides using DBU as Nα-Fmoc deprotection reagent. J. Pept. Sci. 7, 488–494 (2001).

    Article  CAS  Google Scholar 

  41. Dawson, P.E., Muir, T.W., Clark-Lewis, I. & Kent, S.B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  Google Scholar 

  42. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    Article  CAS  Google Scholar 

  43. Hancock, W.S. & Battersby, J.E. A New micro-test for detection of incomplete coupling reactions in solid-phase peptide-synthesis using 2,4,6-trinitrobenzenesulphonic acid. Anal. Biochem. 71, 260–264 (1976).

    Article  CAS  Google Scholar 

  44. Hancock, W.S. Fmoc Solid Phase Peptide Synthesis: A Practical Approach (eds. Chan, W.C. & White, P.D.) (Oxford University Press, Oxford, 2000).

    Google Scholar 

Download references

Acknowledgements

This research was supported by NSF CHE-0414243 (to B.I.) and the Cell Migration Consortium (GM064346). The award of a Marie Curie Fellowship to M.S. is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Imperiali.

Ethics declarations

Competing interests

The authors declare that a patent on the environment–sensitive fluorophores is pending: “Fluorescent Probes for Biological Studies” by Imperiali et al. US Patent Application serial No. 11/106,349, filed April 13, 2005, pending.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sainlos, M., Imperiali, B. Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization. Nat Protoc 2, 3201–3209 (2007). https://doi.org/10.1038/nprot.2007.442

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2007.442

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing