Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Alopecia areata

Abstract

Alopecia areata is an autoimmune disorder characterized by transient, non-scarring hair loss and preservation of the hair follicle. Hair loss can take many forms ranging from loss in well-defined patches to diffuse or total hair loss, which can affect all hair-bearing sites. Patchy alopecia areata affecting the scalp is the most common type. Alopecia areata affects nearly 2% of the general population at some point during their lifetime. Skin biopsies of affected skin show a lymphocytic infiltrate in and around the bulb or the lower part of the hair follicle in the anagen (hair growth) phase. A breakdown of immune privilege of the hair follicle is thought to be an important driver of alopecia areata. Genetic studies in patients and mouse models have shown that alopecia areata is a complex, polygenic disease. Several genetic susceptibility loci were identified to be associated with signalling pathways that are important to hair follicle cycling and development. Alopecia areata is usually diagnosed based on clinical manifestations, but dermoscopy and histopathology can be helpful. Alopecia areata is difficult to manage medically, but recent advances in understanding the molecular mechanisms have revealed new treatments and the possibility of remission in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hair cycle.
Figure 2: Breakdown of immune privilege in alopecia areata.
Figure 3: C3H/HeJ mouse model of alopecia areata.
Figure 4: Clinical manifestations of alopecia areata.
Figure 5: Diagnostic tools to validate and differentiate alopecia areata.

Similar content being viewed by others

References

  1. McElwee, K. J. et al. Comparison of alopecia areata in human and nonhuman mammalian species. Pathobiology 66, 90–107 (1998).

    Google Scholar 

  2. Xing, L. et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 20, 1043–1049 (2014). On the basis of human GWAS, the JAK pathway was determined to be a therapeutic target. These initial studies reveal a potentially efficacious approach to treating patients with alopecia areata using already FDA-approved drugs.

    Google Scholar 

  3. Duvic, M. et al. The National Alopecia Areata Registry — update. J. Investig. Dermatol. Symp. Proc. 16, S53 (2013).

    Google Scholar 

  4. Petukhova, L. et al. Genome-wide association study in alopecia areata implicates both innate and adaptive immunity. Nature 466, 113–117 (2010). This is the first large-scale human genetics study on alopecia areata. It demonstrates the complexity of the genetic basis of alopecia areata. Many of the discoveries confirmed findings in mouse QTL studies reported almost a decade earlier.

    Google Scholar 

  5. Shi, Q. et al. Health-related quality of life (HRQoL) in alopecia areata patients — a secondary analysis of the National Alopecia Areata Registry data. J. Investig. Dermatol. Symp. Proc. 16, S49–S50 (2013).

    Google Scholar 

  6. Michie, H. J., Jahoda, C. A. B., Oliver, R. F. & Johnson, B. E. The DEBR rat: an animal model of human alopecia areata. Br. J. Dermatol. 125, 94–100 (1991). This is the first useable animal model reported to develop alopecia areata, which seems to have a genetic basis.

    Google Scholar 

  7. Oliver, R. et al. The DEBR rat model for alopecia areata. J. Invest. Dermatol. 96, 97S (1991).

    Google Scholar 

  8. Sundberg, J. P., Cordy, W. R. & King, L. E. Alopecia areata in aging C3H/HeJ mice. J. Invest. Dermatol. 102, 847–856 (1994). This is the first description of an inbred laboratory mouse model for alopecia areata. The disease is spontaneous, is associated with a relatively low frequency within the colony and lesions that wax and wane, making it an interesting observation but not a model that is readily amenable to experimental manipulation. Later work with full-thickness skin grafts followed by cell transfer methods provided a very useful model that remains the standard in the field.

    Google Scholar 

  9. Sundberg, J. P. et al. Major locus on mouse chromosome 17 and minor locus on chromosome 9 are linked with alopecia areata in C3H/HeJ mice. J. Invest. Dermatol. 120, 771–775 (2003). This is the first genome-wide evaluation of the complex genetics of alopecia areata in any species. Discoveries made here were later confirmed in human genetic studies.

    Google Scholar 

  10. Sundberg, J. P., Silva, K. A., Li, R., King, L. E. & Cox, G. A. Adult onset alopecia areata is a complex polygenic trait in the C3H/HeJ mouse model. J. Invest. Dermatol. 123, 294–297 (2004). This is a follow-up study on the earlier studies that expanded the number of loci.

    Google Scholar 

  11. Jabbari, A. et al. Molecular signatures define alopecia areata subtypes and transcriptional biomarkers. EBioMedicine 7, 240–247 (2016).

    Google Scholar 

  12. Gip, L., Lodin, A. & Molin, L. Alopecia areata. A follow-up investigation of outpatient material. Acta Derm. Venereol. 49, 180–188 (1969).

    Google Scholar 

  13. Walker, S. A. & Rothman, S. A statistical study and consideration of endocrine influences. J. Invest. Dermatol. 14, 403–413 (1950).

    Google Scholar 

  14. Ikeda, T. A new classification of alopecia areata. Dermatologica 131, 421–445 (1965).

    Google Scholar 

  15. Ro, B. I. Alopecia areata in Korea (1982–1994). J. Dermatol. 22, 858–864 (1995).

    Google Scholar 

  16. Safavi, K. Prevalence of alopecia areata in the First National Health and Nutrition Examination Survey. Arch. Dermatol. 128, 702 (1992). This is the most quoted publication on the epidemiology of alopecia areata.

    Google Scholar 

  17. Safavi, K. H., Muller, S. A., Suman, V. J., Moshell, A. N. & Melton, L. J. Incidence of alopecia areata in Olmstead County, Minnesota, 1975 through 1989. Mayo Clin. Proc. 70, 628–633 (1995).

    Google Scholar 

  18. Mirzoyev, S. A., Schrum, A. G., Davis, M. D. & Torgerson, R. R. Lifetime incidence risk of alopecia areata estimated at 2.1% by Rochester Epidemiology Project, 1990–2009. J. Invest. Dermatol. 134, 1141–1142 (2014).

    Google Scholar 

  19. Fricke, A. C. V. & Miteva, M. Epidemiology and burden of alopecia areata: a systematic review. Clin. Cosmet. Investig. Dermatol. 8, 397–403 (2015).

    Google Scholar 

  20. Whiting, D. A. Histopathologic features of alopecia areata. Arch. Dermatol. 139, 1555–1559 (2003).

    Google Scholar 

  21. Lundin, M. et al. Gender differences in alopecia areata. J. Drugs Dermatol. 13, 409–413 (2014).

    Google Scholar 

  22. Ranawaka, R. R. An observational study of alopecia areata in Sri Lankan adult patients. Ceylon Med. J. 59, 128–131 (2014).

    Google Scholar 

  23. Burns, T., Breathnach, S., Cox, N. & Griffiths, C. (eds) Rook's Textbook of Dermatology 8th edn (Blackwell, 2010).

    Google Scholar 

  24. Rocha, J. et al. Alopecia areata: a retrospective study of the paediatric dermatology department (2000–2008). Acta Med. Port. 24, 207–214 (in Portuguese) (2011).

    Google Scholar 

  25. Nanda, A., Al-Fouzan, A. S. & Al-Hasawi, F. Alopecia areata in children: a clinical profile. Pediatr. Dermatol. 19, 482–485 (2002).

    Google Scholar 

  26. Xiao, F. L. et al. The epidemiology of childhood alopecia areata in China: a study of 226 patients. Pediatr. Dermatol. 23, 13–18 (2006).

    Google Scholar 

  27. Kakourou, T., Karachristou, K. & Chrousos, G. A case series of alopecia areata in children: impact of personal and family history of stress and autoimmunity. J. Eur. Acad. Dermatol. Venereol. 21, 356–359 (2007).

    Google Scholar 

  28. Guzmán-Sánchez, D. A., Villanueva-Quintero, G. D., Alfaro, N. & McMichael, A. A clinical study of alopecia areata in Mexico. Int. J. Dermatol. 46, 1308–1310 (2007).

    Google Scholar 

  29. Yang, S. et al. The genetic epidemiology of alopecia areata in China. Br. J. Dermatol. 151, 16–23 (2004).

    Google Scholar 

  30. Tan, E., Tay, Y. K. & Giam, Y. C. A clinical study of childhood alopecia in Singapore. Pediatr. Dermatol. 19, 298–301 (2002).

    Google Scholar 

  31. Barsky, S. & Gigli, I. Alopecia areata in twins. Arch. Dermatol. 83, 224–225 (1961).

    Google Scholar 

  32. Bonjean, M., Prime, A. & Avon, P. Pelada in 2 homozygotic twins. Lyon Med. 219, 1852–1853 (in French) (1968).

    Google Scholar 

  33. Cole, G. W. & Herzlinger, D. Alopecia universalis in identical twins. Int. J. Dermatol. 23, 283 (1984).

    Google Scholar 

  34. Hendren, S. Identical alopecia areata in identical twins. Arch. Dermatol. 60, 793–795 (1949).

    Google Scholar 

  35. Weidman, A. I., Zion, L. S. & Mamelok, A. E. Alopecia areata occurring simultaneously in identical twins. Arch. Dermatol. 74, 424–426 (1956).

    Google Scholar 

  36. Werth, V. P., White, W. L., Sanchez, M. R. & Franks, A. G. Incidence of alopecia areata and lupus erythematosus. Arch. Dermatol. 128, 368–371 (1992).

    Google Scholar 

  37. Insler, M. S. & Helm, C. J. Alopecia areata including the cilia and eyebrows of two sisters. Ann. Ophthalmol. 21, 451–453 (1989).

    Google Scholar 

  38. Hordinsky, M. K., Hallgren, H., Nelsen, D. & Filipovich, A. H. Familial alopecia areata. HLA antigens and autoimmunity formation in an American family. Arch. Dermatol. 120, 464–468 (1984).

    Google Scholar 

  39. Van der Steen, P. et al. The genetic risk for alopecia areata in first degree relatives of severely affected patients. An estimate. Acta Derm. Venereol. 72, 373–375 (1992).

    Google Scholar 

  40. Dawn, G. & Kumar, B. Profile of alopecia areata in northern India. Int. J. Dermatol. 35, 22–27 (1996).

    Google Scholar 

  41. Barahmani, N. et al. Human leukocyte antigen class II alleles are associated with risk of alopecia areata. J. Invest. Dermatol. 128, 240–243 (2008).

    Google Scholar 

  42. Betz, R. C. et al. Genome-wide meta-analysis in alopecia areata resolves HLA associations and reveals two new susceptibility loci. Nat. Commun. 6, 5966 (2015).

    Google Scholar 

  43. Chu, S. Y. et al. Comorbidity profiles among patients with alopecia areata: the importance of onset age, a nationwide population-based study. J. Am. Acad. Dermatol. 65, 949–956 (2011).

    Google Scholar 

  44. Chen, C.-H., Wang, K.-H., Lin, H.-C. & Chung, S.-D. Follow-up study on the relationship between alopecia areata and risk of autoimmune diseases. J. Dermatol. 43, 228–229 (2015).

    Google Scholar 

  45. Garzorz, N. et al. Dissecting susceptibility from exogenous triggers: the model of alopecia areata and associated inflammatory skin diseases. J. Eur. Acad. Dermatol. Venereol. 29, 2429–2435 (2015).

    Google Scholar 

  46. Lee, N. R. et al. Differences in comorbidity profiles between early-onset and late-onset alopecia areata patients: a retrospective study of 871 Korean patients. Ann. Dermatol. 26, 722–726 (2014).

    Google Scholar 

  47. Mohan, G. C. & Silverberg, J. I. Association of vitiligo and alopecia areata with atopic dermatitis: a systematic review and meta-analysis. JAMA Dermatol. 151, 522–528 (2015).

    Google Scholar 

  48. Chen, C.-H. et al. Association between herpes zoster and alopecia areata: a population-based study. J. Dermatol. 42, 824–825 (2015).

    Google Scholar 

  49. Diaz-Angulo, S., Lopez-Hoyos, M., Munoz-Cacho, P., Lopez-Escobar, M. & Gonzalez-Lopez, M. A. High prevalence of thyroid autoimmunity in patients with alopecia areata and vitiligo: a controlled study. Australas. J. Dermatol. 56, 142–143 (2015).

    Google Scholar 

  50. Kurtipek, G. S., Cihan, F. G., Demirbas, S. E. & Ataseven, A. The frequency of autoimmune thyroid disease in alopecia areata and vitiligo patients. Biomed. Res. Int. 2015, 435947 (2015).

    Google Scholar 

  51. Petukhova, L. & Christiano, A. M. The genetic architecture of alopecia areata. J. Investig. Dermatol. Symp. Proc. 16, S16–S22 (2013).

    Google Scholar 

  52. Kavak, A., Baykal, C., Ozarmagan, G. & Akar, U. HLA and alopecia areata. Int. J. Dermatol. 39, 589–592 (2000).

    Google Scholar 

  53. Hordinsky, M. K. Overview of alopecia areata. J. Investig. Dermatol. Symp. Proc. 16, S13–S15 (2013).

    Google Scholar 

  54. Colombe, B. W., Lou, C. D. & Price, V. H. The genetic basis of alopecia areata: HLA associations with patchy alopecia areata versus alopecia totalis and alopecia universalis. J. Investig. Dermatol. Symp. Proc. 4, 216–219 (1999).

    Google Scholar 

  55. Gough, S. C. & Simmonds, M. J. The HLA region and autoimmune disease: associations and mechanisms of action. Curr. Genomics 8, 453–465 (2007).

    Google Scholar 

  56. Petukhova, L. & Christiano, A. M. Functional interpretation of genome-wide association study evidence in alopecia areata. J. Invest. Dermatol. 136, 314–317 (2016).

    Google Scholar 

  57. Carroll, J., McElwee, K. J., King, L. E., Byrne, M. C. & Sundberg, J. P. Gene array profiling and immunomodulation studies define a cell mediated immune response underlying the pathogenesis of alopecia areata in a mouse model and humans. J. Invest. Dermatol. 119, 392–402 (2002). This is the first transcriptome analysis of alopecia areata in both humans and laboratory mice. The lymphocyte co-stimulatory cascade was identified as the underlying molecular pathway and was blocked at several points with monoclonal antibodies, pointing towards novel therapeutic approaches, some of which are now in clinical trials.

  58. McPhee, C. G. et al. Gene expression studies identify Cxcr3 and its ligands. Cxcl9, Cxcl10, andCxcl11in the pathogenesis of alopecia areata in the mouse. J. Invest. Dermatol. 132, 1736–1738 (2012).

    Google Scholar 

  59. Fischer, J. et al. Genome-wide analysis of copy number variants in alopecia areata in a Central European cohort reveals association with MCHR2. Exp. Dermatol. http://dx.doi.org/10.1111/exd.13123 (2016).

  60. Rice, R. H. et al. Differentiating inbred mouse strains from each other and those with single gene mutations using hair proteomics. PLoS ONE 7, e51956 (2012).

    Google Scholar 

  61. Rice, R. H. et al. Distinguishing mouse strains by proteomic analysis of pelage hair. J. Invest. Dermatol. 129, 2120–2125 (2009).

    Google Scholar 

  62. Sundberg, J. P. et al. Crisp1 and alopecia areata in C3H/HeJ mice. Exp. Mol. Pathol. 97, 525–528 (2014).

    Google Scholar 

  63. Eckert, J., Church, R. E. & Ebling, F. J. The pathogenesis of alopecia areata. Br. J. Dermatol. 80, 203–210 (1968).

    Google Scholar 

  64. Messenger, A. G., Slater, D. N. & Bleehen, S. S. Alopecia areata: alterations in the hair growth cycle and correlation with the follicular pathology. Br. J. Dermatol. 114, 337–347 (1986).

    Google Scholar 

  65. VanScott, E. J. Morphologic changes in pilosebaceous units and anagen hairs in alopecia areata. J. Invest. Dermatol. 31, 35–43 (1958).

    Google Scholar 

  66. Chase, H. B., Rauch, H. & Smith, V. W. Critical stages of hair development and pigmentation in the mouse. Physiol. Zool. 24, 1–8 (1951).

    Google Scholar 

  67. Thies, W. Comparative histologic studies in alopecia areata and scar-atrophy alopecia. Arch. Klin. Exp. Dermatol. 227, 541–549 (in German) (1966).

    Google Scholar 

  68. Messenger, A. G. & Bleehen, S. S. Alopecia areata: light and electron microscopic pathology of the regrowing white hair. Br. J. Dermatol. 110, 155–162 (1984).

    Google Scholar 

  69. Paus, R., Slominski, A. & Czarnetzki, B. M. Is alopecia areata an autoimmune-response against melanogenesis-related proteins exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J. Biol. Med. 66, 541–554 (1993). Although this is primarily an opinion paper, it set the focus of research for the next two decades. Much of the work was proven to be correct in both patients and animal models.

    Google Scholar 

  70. Tharumanathan, S. Understanding the biological mechanism of alopecia areata. Am. J. Dermatol. Venereol. 4, 1–4 (2015).

    Google Scholar 

  71. Paus, R. & Bertolini, M. The role of hair follicle immune privilege collapse in alopecia areata: status and perspectives. J. Investig. Dermatol. Symp. Proc. 16, S25–S27 (2013).

    Google Scholar 

  72. Paus, R., Nickoloff, B. J. & Ito, T. A “hairy” privilege. Trends Immunol. 26, 32–40 (2005).

    Google Scholar 

  73. Meyer, K. C. et al. Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br. J. Dermatol. 159, 1077–1085 (2008).

    Google Scholar 

  74. Ito, T., Meyer, K. C., Ito, N. & Paus, R. Immune privilege and the skin. Curr. Dir. Autoimmun. 10, 27–52 (2008).

    Google Scholar 

  75. Trautman, S., Thompson, M., Roberts, J. & Thompson, C. T. Melanocytes: a possible autoimmune target in alopecia areata. J. Am. Acad. Dermatol. 61, 529–530 (2009).

    Google Scholar 

  76. Ito, T. et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J. Invest. Dermatol. 128, 1196–1206 (2008).

    Google Scholar 

  77. Bertolini, M. et al. Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse. Br. J. Dermatol. 175, 531–541 (2016).

    Google Scholar 

  78. Finner, A. M. Alopecia areata: clinical presentation, diagnosis, and unusual cases. Dermatol. Ther. 24, 348–354 (2011).

    Google Scholar 

  79. Messenger, A. G. & Bleehen, S. S. Expression of HLA-DR by anagen hair follicles in alopecia areata. J. Invest. Dermatol. 85, 569–572 (1985).

    Google Scholar 

  80. Paus, R., Slominski, A. & Czarnetzki, B. M. Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J. Biol. Med. 66, 541–554 (1993).

    Google Scholar 

  81. Gilhar, A. et al. Melanocyte-associated T cell epitopes can function as autoantigens for transfer of alopecia areata to human scalp explants on Prkdcscid mice. J. Invest. Dermatol. 117, 1357–1362 (2001).

    Google Scholar 

  82. Erb, U., Freyschmidt-Paul, P. & Zö ller, M. Tolerance induction by hair-specific keratins in murine alopecia areata. J. Leukoc. Biol. 94, 845–857 (2013).

    Google Scholar 

  83. Wang, E. H. et al. Identification of autoantigen epitopes in alopecia areata. J. Invest. Dermatol. 136, 1617–1626 (2016).

    Google Scholar 

  84. Alzolibani, A. A. Preferential recognition of hydroxyl radical-modified superoxide dismutase by circulating autoantibodies in patients with alopecia areata. Ann. Dermatol. 26, 576–583 (2014).

    Google Scholar 

  85. Kalkan, G. et al. Relationship between manganese superoxide dismutase (MnSODAla-9Val) and glutathione peroxidase (GPx1 Pro 197 Leu) gene polymorphisms and alopecia areata. Int. J. Exp. Med. 8, 21533–21540 (2015).

    Google Scholar 

  86. Fattah, N. S. A., Ebrahim, A. & Okda, E. S. E. Lipid peroxidation/antioxidant activity in patients with alopecia areata. J. Eur. Acad. Dermatol. Venereol. 25, 403–408 (2011).

    Google Scholar 

  87. Mijailović, B., Mladenović, T., Hrnjak, M., Karadaglić, D. & Nikolić, B. Contact thermometry of lesions in alopecia areata. Vojnosanit. Pregl. 54, 31–33 (in Serbian) (1997).

    Google Scholar 

  88. Skoutelis, A., Freinkel, R. K., Kaufman, D. S. & Leibovich, S. J. Angiogenic activity is defective in monocytes from patients with alopecia universalis. J. Invest. Dermatol. 95, 139–143 (1990).

    Google Scholar 

  89. Popchristov, P., Konstantinov, A. & Obreshkova, E. The blood vessels of the scalp in patients with alopecia areata before and after corticosteroid therapy. Br. J. Dermatol. 80, 753–757 (1968).

    Google Scholar 

  90. Karaman, S. et al. Decline of lymphatic vessel density and function in murine skin during aging. Angiogenesis 18, 489–498 (2015).

    Google Scholar 

  91. Sundberg, J. P. et al. Dermal lymphatic dilation in a mouse model of alopecia areata. Exp. Mol. Pathol. 100, 332–336 (2016).

    Google Scholar 

  92. Sundberg, J. P., Elson, C. O., Bedigian, H. & Birkenmeier, E. H. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 107, 1726–1735 (1994).

    Google Scholar 

  93. Safina, D. D., Abdulkhakov, R. A., Abdulkhakov, S. R., Odintsova, A. K. & Cheremina, N. A. Clinical case of a combination of ulcerative colitis and alopecia areata. Eksp. Klin. Gastroenterol. 2013, 92–96 (in Russian) (2013).

    Google Scholar 

  94. McElwee, K. J., Boggess, D., King, L. E. & Sundberg, J. P. Experimental induction of alopecia areata-like hair loss in C3H/HeJ mice using full-thickness skin grafts. J. Invest. Dermatol. 111, 797–803 (1998). This paper describes the methods of using full-thickness skin grafts to induce or transfer alopecia areata from an affected inbred mouse to another histocompatible inbred mouse in a reproducible manner. Disease progressed in a predictable manner, which allowed experimental manipulation. Later studies refined this method with various cell transfer methods.

    Google Scholar 

  95. McElwee, K. J. et al. Dietary soy oil content and soy derived phytoestrogen genistein increase resistance to alopecia areata onset in C3H/HeJ mice. Exp. Dermatol. 12, 30–36 (2003).

    Google Scholar 

  96. Chu, C.-H., Cheng, Y.-P. & Chan, J.-Y. L. Alopecia areata after vaccination: recurrence with rechallenge. Pediatr. Dermatol. 33, e218–e219 (2016).

    Google Scholar 

  97. Wise, R., Kiminyo, K. & Salive, M. Hair loss after routine vaccination. JAMA 278, 1176–1178 (1997).

    Google Scholar 

  98. Sánchez-Ramón, S., Gil, J., Cianchetta-Sí vori, M. & Ferná ndez-Cruz, E. Alopecia universalis in an adult after routine tetanus toxoid vaccine. Med. Clin. (Barc.) 136, 318 (in Spanish) (2011).

    Google Scholar 

  99. Lai, Y. C. & Yew, Y. W. Severe autoimmune adverse events post herpes zoster vaccine: a case–control study of adverse events in a national database. J. Drugs Dermatol. 14, 681–684 (2015).

    Google Scholar 

  100. Geier, D. A. & Geier, M. R. A case–control study of quadrivalent human papillomavirus vaccine-associated autoimmune adverse events. Clin. Rheumatol. 34, 1225–1231 (2015).

    Google Scholar 

  101. Ito, T. & Tokura, Y. Alopecia areata triggered or exacerbated by swine flu virus infection. J. Dermatol. 39, 863–864 (2012).

    Google Scholar 

  102. Sundberg, J. P. et al. Recombinant human hepatitis B vaccine initiating alopecia areata: testing the hypothesis using the C3H/HeJ mouse model. Vet. Dermatol. 20, 99–104 (2009).

    Google Scholar 

  103. Sundberg, J. P., McElwee, K. J., Brehm, M. A., Su, L. & King, L. E. Animal models for alopecia areata: what and where? J. Investig. Dermatol. Symp. Proc. 17, 23–26 (2015).

    Google Scholar 

  104. Gilhar, A., Schrum, A. G., Etzioni, A., Waldman, H. & Paus, R. Alopecia areata: animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun. Rev. 15, 726–735 (2016).

    Google Scholar 

  105. Sundberg, J. P., Nanney, L. B., Fleckman, P. & King, L. E. Jr in Comparative Anatomy and Histology. A Mouse and Human Atlas (eds Treuting, P., Dintzis, S., Fervert, C. W., Liggitt, D. & Montine, K. S. ) 433–455 (Academic Press, 2012).

    Google Scholar 

  106. Sundberg, J. P. & King, L. E. in Pathology of Genetically Engineered Mice (eds Ward, J. M., Mahler, J. F., Maronpot, R. R. & Sundberg, J. P. ) 181–213 (Iowa State University Press, 2000).

    Google Scholar 

  107. Freyschmidt-Paul, P. et al. Treatment of alopecia areata in C3H/HeJ mice with the topical immunosuppressant FK506 (Tacrolimus). Eur. J. Dermatol. 11, 405–409 (2001).

    Google Scholar 

  108. Sun, J., Silva, K. A., McElwee, K. J., King, L. E. & Sundberg, J. P. The C3H/HeJ mouse and DEBR rat models for alopecia areata: preclinical drug screening tools. Exp. Dermatol. 17, 793–805 (2008).

    Google Scholar 

  109. Harries, M. J., Sun, J., Paus, R. & King, L. E. Management of alopecia areata. BMJ 341, c3671 (2010).

    Google Scholar 

  110. McElwee, K., Boggess, D., Miller, J., King, L. & Sundberg, J. Spontaneous alopecia areata-like hair loss in one congenic and seven inbred laboratory mouse strains. J. Investig. Dermatol. Symp. Proc. 4, 202–206 (1999).

    Google Scholar 

  111. Sundberg, J. P. et al. Mouse alopecia areata and heart disease: know your mouse! J. Invest. Dermatol. 134, 279–281 (2014).

    Google Scholar 

  112. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Google Scholar 

  113. Berning, A. K., Eicher, E. M., Paul, W. E. & Scher, I. Mapping of the X-linked immune deficiency mutation (xid) of CBA/N mice. J. Immunol. 124, 1875–1877 (1980).

    Google Scholar 

  114. King, L. E., McElwee, K. J. & Sundberg, J. P. in Dermatologic Immunity: Current Directions in Autoimmunity (eds Nickoloff, B. J. & Nestle, F. O. ) 280–312 (Karger, 2008).

    Google Scholar 

  115. Alli, R., Nguyen, P., Boyd, K., Sundberg, J. P. & Geiger, T. L. A mouse model of clonal CD8+ T lymphocyte-mediated alopecia areata progressing to alopecia universalis. J. Immunol. 188, 477–486 (2012).

    Google Scholar 

  116. McElwee, K. J. et al. Alopecia areata in C3H/HeJ mice involves leucocyte-mediated root sheath disruption in advance of overt hair loss. Vet. Pathol. 40, 643–650 (2003).

    Google Scholar 

  117. Silva, K. A. & Sundberg, J. P. Surgical methods for full thickness skin grafts to induce alopecia areata in C3H/HeJ mice. Comp. Med. 63, 392–397 (2013).

    Google Scholar 

  118. McElwee, K. J. et al. Transfer of CD8+ cells induces localized hair loss whereas CD4+/CD25 cells promote systemic alopecia areata and CD4+/CD25+ cells blockade disease onset in the C3H/HeJ mouse model. J. Invest. Dermatol. 124, 947–957 (2005).

    Google Scholar 

  119. Gilhar, A. et al. Autoimmune disease induction in a healthy human organ: a humanized mouse model of alopecia areata. J. Invest. Dermatol. 133, 844–847 (2013).

    Google Scholar 

  120. Restrepo, R. & Calonje, E. in McKee's Pathologyof the Skin (eds Calonje, E., Brenn, T., Lazar, A. & McKee, P. H. ) 967–1050 (Elsevier, 2012).

    Google Scholar 

  121. Messenger, A. G., Sinclair, R. D., Farrant, P. & de Berker, D. A. R. in Rook's Textbook of Dermatology 9th edn (eds Griffiths, C., Barker, J., Bleiker, T., Chalmers, R. & Creamer, D. ) 1–88 (Wiley-Blackwell, 2016).

    Google Scholar 

  122. McElwee, K. J., Silva, K., Beamer, W. G., King, L. E. & Sundberg, J. P. Melanocyte and gonad activity as potential modifying factors in C3H/HeJ mouse alopecia areata. Exp. Dermatol. 10, 420–429 (2001).

    Google Scholar 

  123. Gandhi, V., Baruah, M. C. & Bhattacharaya, S. N. Nail changes in alopecia areata: incidence and pattern. Indian J. Dermatol. Venereol. Leprol. 69, 114–115 (2003).

    Google Scholar 

  124. Kasumagic-Halilovic, E. & Prohic, A. Nail changes in alopecia areata: frequency and clinical presentation. J. Eur. Acad. Dermatol. Venereol. 23, 240–241 (2009).

    Google Scholar 

  125. Sharma, V. K., Dawn, G., Muralidhar, S. & Kumar, B. Nail changes in 1000 Indian patients with alopecia areata. Eur. J. Acad. Dermatol. Venereol. 10, 189–191 (1998).

    Google Scholar 

  126. Tosti, A., Bellavista, S. & Iorizzo, M. Alopecia areata: a long term follow-up study of 191 patients. J. Am. Acad. Dermatol. 55, 438–441 (2006).

    Google Scholar 

  127. De Waard-van der Spek, F. B., Oranje, A. P., De Raeymaecker, D. M. & Peereboom-Wynia, J. D. Juvenile versus maturity-onset alopecia areata — a comparative retrospective clinical study. Clin. Exp. Dermatol. 14, 429–433 (1989).

    Google Scholar 

  128. Sharma, V. K., Dawn, G. & Kumar, B. Profile of alopecia areata in northern India. Int. J. Dermatol. 35, 22–27 (1996).

    Google Scholar 

  129. Tan, E., Tay, Y. K., Goh, C. L. & Giam, Y. C. The pattern and profile of alopecia areata in Singapore — a study of 219 Asians. Int. J. Dermatol. 41, 748–753 (2002).

    Google Scholar 

  130. Goh, C., Finkel, M., Christos, P. J. & Sinha, A. A. Profile of 513 patients with alopecia areata: associations of disease subtypes with atopy, autoimmune disease and positive family history. J. Eur. Acad. Dermatol. Venereol. 20, 1055–1060 (2006).

    Google Scholar 

  131. Olsen, E. A. et al. Alopecia areata investigational assessment guidelines — part II. National Alopecia Areata Foundation. J. Am. Acad. Dermatol. 51, 440–447 (2004).

    Google Scholar 

  132. Jang, Y. H. et al. Alopecia areata progression index, a scoring system for evaluating overall hair loss activity in alopecia areata patients with pigmented hair: a development and reliability assessment. Dermatology 232, 143–149 (2016).

    Google Scholar 

  133. Mubki, T., Rudnicka, L., Olszewska, M. & Shapiro, J. Evaluation and diagnosis of the hair loss patient: part II. Trichoscopic and laboratory evaluations. J. Am. Acad. Dermatol. 71, 431.e1–431.e11 (2014).

    Google Scholar 

  134. Zlotogorski, A., Panteleyev, A. A., Aita, V. M. & Christiano, A. M. Clinical and molecular diagnostic criteria of congenital atrichia with papular lesions. J. Invest. Dermatol. 118, 887–890 (2002).

    Google Scholar 

  135. Miller, J. et al. Atrichia caused by mutations in the vitamin D receptor gene is a phenocopy of generalized atrichia caused by mutations in the hairless gene. J. Invest. Dermatol. 117, 612–617 (2001).

    Google Scholar 

  136. Delamere, F. M., Sladden, M. M., Dobbins, H. M. & Leonardi-Bee, J. Interventions for alopecia areata. Cochrane Database Syst. Rev. 16, CD004413 (2008).

    Google Scholar 

  137. Messenger, A. G., McKillop, J., Farrant, P., McDonagh, A. J. & Sladden, M. British Association of Dermatologists' guidelines for the management of alopecia areata 2012. Br. J. Dermatol. 166, 916–926 (2012).

    Google Scholar 

  138. Charuwichitratana, S., Wattanakrai, P. & Tanrattanakorn, S. Randomized double-blind placebo-controlled trial in the treatment of alopecia areata with 0.25% desoximetasone cream. Arch. Dermatol. 136, 1276–1277 (2000).

    Google Scholar 

  139. Tosti, A., Piraccini, B. M., Pazzaglia, M. & Vincenzi, C. Clobetasol propionate 0.05% under occlusion in the treatment of alopecia totalis/universalis. J. Am. Acad. Dermatol. 49, 96–98 (2003).

    Google Scholar 

  140. Tosti, A., Iorizzo, M., Botta, G. L. & Milani, M. Efficacy and safety of a new clobetasol propionate 0.05% foam in alopecia areata: a randomized, double-blind placebo-controlled trial. J. Eur. Acad. Dermatol. Venereol. 20, 1243–1247 (2006).

    Google Scholar 

  141. Solomon, I. L. & Green, O. C. Monilethrix: its occurrence in seven generations, with one case that responded to endocrine therapy. N. Engl. J. Med. 269, 1279–1282 (1963).

    Google Scholar 

  142. Kubeyinje, E. P. Intralesional triamcinolone acetonide in alopecia areata amongst 62 Saudi Arabs. East Afr. Med. J. 71, 674–675 (1994).

    Google Scholar 

  143. Fuentes-Duculan, J. et al. Biomarkers of alopecia areata disease activity and response to corticosteroid treatment. Exp. Dermatol. 25, 282–286 (2016).

    Google Scholar 

  144. Olsen, E. A., Carson, S. C. & Turney, E. A. Systemic steroids with or without 2% topical minoxidil in the treatment of alopecia areata. Arch. Dermatol. 128, 1467–1473 (1992).

    Google Scholar 

  145. Sharma, V. K. & Gupta, S. Twice weekly 5 mg dexamethasone oral pulse in the treatment of extensive alopecia areata. J. Dermatol. 26, 562–565 (1999).

    Google Scholar 

  146. Nakajima, T., Inui, S. & Itami, S. Pulse corticosteroid therapy for alopecia areata: study of 139 patients. Dermatology 215, 320–324 (2007).

    Google Scholar 

  147. Yang, C. C. et al. Early intervention with high-dose steroid pulse therapy prolongs disease-free interval of severe alopecia areata: a retrospective study. Ann. Dermatol. 25, 471–474 (2013).

    Google Scholar 

  148. Kar, B. R., Handa, S., Dogra, S. & Kumar, B. Placebo-controlled oral pulse prednisolone therapy in alopecia areata. J. Am. Acad. Dermatol. 52, 287–290 (2005).

    Google Scholar 

  149. Happle, R. Antigenic competition as a therapeutic concept for alopecia areata. Arch. Dermatol. Res. 267, 109–114 (1980). This paper provides an early approach to treating alopecia areata; the topical application of potent allergens has been used extensively in Europe and Canada for decades.

    Google Scholar 

  150. Bröcker, E. B., Echternacht-Happle, K., Hamm, H. & Happle, R. Abnormal expression of class I and class II major histocompatibility antigens in alopecia areata: modulation by topical immunotherapy. J. Invest. Dermatol. 88, 564–568 (1987).

    Google Scholar 

  151. Hoffmann, R. et al. Growth factor mRNA in alopecia areata before and after treatment with the contact allergen diphenylcyclopropenone. Acta Derm. Venereol. 76, 17–20 (1996).

    Google Scholar 

  152. Marhaba, R. et al. The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J. Immunol. 179, 5071–5081 (2007).

    Google Scholar 

  153. Rokhsar, C. K., Shupack, J. L., Vafai, J. J. & Washenik, K. Efficacy of topical sensitizers in the treatment of alopecia areata. J. Am. Acad. Dermatol. 39, 751–761 (1998).

    Google Scholar 

  154. Van der Steen, P. H. M., Van Baar, H. M. J., Happle, R., Boezeman, J. B. M. & Perret, C. M. Prognostic factors in the treatment of alopecia areata with diphenylcyclopropenone. J. Am. Acad. Dermatol. 24, 227–230 (1991).

    Google Scholar 

  155. Gordon, P. M., Aldrige, R. D., McVittie, E. & Hunter, J. A. Topical diphencyprone for alopecia areata: evaluation of 48 cases after 30 months' follow-up. Br. J. Dermatol. 134, 869–871 (1996).

    Google Scholar 

  156. Wiseman, M. C., Shapiro, J., MacDonald, N. & Lui, H. Predictive model for immunotherapy of alopecia areata with diphencyprone. Arch. Dermatol. 137, 1063–1068 (2001).

    Google Scholar 

  157. Hull, S. M., Pepall, L. & Cunliffe, W. J. Alopecia areata in children: response to treatment with diphencyprone. Br. J. Dermatol. 125, 164–168 (1991).

    Google Scholar 

  158. Schuttelaar, M. L. et al. Alopecia areata in children: treatment with diphencyprone. Br. J. Dermatol. 135, 581–585 (1996).

    Google Scholar 

  159. Tosti, A., Guidetti, M. S., Bardazzi, F. & Misciali, C. Long-term results of topical immunotherapy in children with alopecia totalis or alopecia universalis. J. Am. Acad. Dermatol. 35, 199–201 (1996).

    Google Scholar 

  160. Tosti, A., Guerra, L. & Bardazzi, F. Contact urticaria during topical immunotherapy. Contact Dermatitis 21, 196–197 (1989).

    Google Scholar 

  161. MacDonald-Hull, S. P., Cotterill, J. A. & Norris, J. F. Vitiligo following diphencyprone dermatitis. Br. J. Dermatol. 120, 323 (1989).

    Google Scholar 

  162. Joly, P. The use of methotrexate alone or in combination with low doses of oral corticosteroids in the treatment of alopecia totalis or universalis. J. Am. Acad. Dermatol. 55, 632–636 (2006).

    Google Scholar 

  163. Hammerschmidt, M. & Brenner, F. M. Efficacy and safety of methotrexate in alopecia areata. An. Bras. Dermatol. 89, 729–734 (2014).

    Google Scholar 

  164. Anuset, D., Perceau, G., Bernard, P. & Reguiai, Z. Efficacy and safety of methotrexate combined with low- to moderate-dose corticosteroids for severe alopecia areata. Dermatology 232, 242–248 (2016).

    Google Scholar 

  165. Shapiro, J., Lui, H., Tron, V. & Ho, V. Systemic cyclosporine and low-dose prednisone in the treatment of chronic severe alopecia areata. J. Am. Acad. Dermatol. 36, 114–117 (1997).

    Google Scholar 

  166. Price, V. H., Willey, A. & Chen, B. K. Topical tacrolimus in alopecia areata. J. Am. Acad. Dermatol. 52, 138–139 (2005).

    Google Scholar 

  167. Strober, B. E. et al. Etanercept does not effectively treat moderate to severe alopecia areata: an open-label study. J. Am. Acad. Dermatol. 52, 1082–1084 (2005).

    Google Scholar 

  168. Ferran, M., Calvet, J., Almirall, M., Pujol, R. M. & Maymó, J. Alopecia areata as another immune-mediated disease developed in patients treated with tumour necrosis factor-α blocker agents: report of five cases and review of the literature. J. Eur. Acad. Dermatol. Venereol. 25, 479–484 (2011).

    Google Scholar 

  169. Tauber, M. et al. Alopecia areata occurring during anti-TNF therapy: a national multicenter prospective study. J. Am. Acad. Dermatol. 70, 1146–1149 (2014).

    Google Scholar 

  170. Price, V. H. et al. Subcutaneous efalizumab is not effective in the treatment of alopecia areata. J. Am. Acad. Dermatol. 58, 395–402 (2008).

    Google Scholar 

  171. Strober, B. E. et al. Alefacept for severe alopecia areata: a randomized, double-blind, placebo-controlled study. Arch. Dermatol. 145, 262–266 (2009).

    Google Scholar 

  172. Byun, J. W., Moon, J. H., Bang, C. Y., Shin, J. & Choi, G. S. Effectiveness of 308-nm excimer laser therapy in treating alopecia areata, determined by examining the treated sides of selected alopecic patches. Dermatology 231, 70–76 (2015).

    Google Scholar 

  173. Mlacker, S. et al. A review on laser and light-based therapies for alopecia areata. J. Cosmet. Laser Ther. http://dx.doi.org/10.1080/14764172.2016.1248440 (2017).

  174. King, L. E., Silva, K. A., Kennedy, V. E. & Sundberg, J. P. Lack of response to laser comb in spontaneous and graft-induced alopecia areata in C3H/HeJ mice. J. Invest. Dermatol. 134, 264–266 (2014).

    Google Scholar 

  175. Claudy, A. L. & Gagnaire, D. PUVA treatment of alopecia areata. Arch. Dermatol. 119, 975–978 (1983).

    Google Scholar 

  176. Lassus, A., Eskelinen, A. & Johansson, E. Treatment of alopecia areata with three different PUVA modalities. Photodermatology 1, 141–144 (1984).

    Google Scholar 

  177. Mitchell, A. J. & Douglass, M. C. Topical photochemotherapy for alopecia areata. J. Am. Acad. Dermatol. 12, 644–649 (1985).

    Google Scholar 

  178. Taylor, C. R. & Hawk, J. L. PUVA treatment of alopecia areata partialis, totalis and universalis: audit of 10 years' experience at St John's Institute of Dermatology. Br. J. Dermatol. 133, 914–918 (1995).

    Google Scholar 

  179. Healy, E. & Rogers, S. PUVA treatment for alopecia areata — does it work? A retrospective review of 102 cases. Br. J. Dermatol. 129, 42–44 (1993).

    Google Scholar 

  180. Hunt, N. & McHale, S. The psychological impact of alopecia. BMJ 331, 951–953 (2005).

    Google Scholar 

  181. Bilgiç, Ö. et al. Psychiatric symptomatology and health-related quality of life in children and adolescents with alopecia areata. J. Eur. Acad. Dermatol. Venereol. 28, 1463–1468 (2014).

    Google Scholar 

  182. Karimkhani, C. et al. Global burden of skin disease as reflected in Cochrane Database of Systematic Reviews. JAMA Dermatol. 150, 945–951 (2014).

    Google Scholar 

  183. Rencz, F. et al. Alopecia areata and health-related quality of life: a systematic review and meta-analysis. Br. J. Dermatol. 175, 561–571 (2016).

    Google Scholar 

  184. Liu, L. Y., King, B. A. & Craiglow, B. G. Health-related quality of life (HRQoL) among patients with alopecia areata (AA): a systematic review. J. Am. Acad. Dermatol. 75, 806–812 (2016).

    Google Scholar 

  185. Cartwright, T., Endean, N. & Porter, A. Illness perceptions, coping and quality of life in patients with alopecia. Br. J. Dermatol. 160, 1034–1039 (2009).

    Google Scholar 

  186. Lebwohl, M., Heymann, W., Berth-Jones, J. & Coulson, I. Treatment of Skin Disease: Comprehensive Therapeutic Strategies (Expert Consult — Online and Print) 4th edn (Saunders, 2014).

    Google Scholar 

  187. Sundberg, J. P., McElwee, K. J., Carroll, J. M. & King, L. E. Jr. Hypothesis testing: CTLA4 costimulatory pathways critical in pathogenesis of human and mouse alopecia areata. J. Invest. Dermatol. 131, 2323–2324 (2011).

    Google Scholar 

  188. John, K. K.-G. et al. Genetic variants in CTLA4 are strongly associated with alopecia areata. J. Invest. Dermatol. 131, 1169–1172 (2011).

    Google Scholar 

  189. Ghoreishi, M., Martinka, M. & Dutz, J. P. Type 1 interferon signature in the scalp lesions of alopecia areata. Br. J. Dermatol. 163, 57–62 (2010).

    Google Scholar 

  190. Subramanya, R. D., Coda, A. B. & Sinha, A. A. Transcriptional profiling in alopecia areata defines immune and cell cycle control related genes within disease-specific signatures. Genomics 96, 146–153 (2010).

    Google Scholar 

  191. Dai, Z. et al. CXCR3 blockade inhibits T cell migration into the skin and prevents development of alopecia areata. J. Immunol. 197, 1089–1099 (2016).

    Google Scholar 

  192. Guttman-Yassky, E. et al. Extensive alopecia areata is reversed by IL-12/IL-23p40 cytokine antagonism. J. Allergy Clin. Immunol. 137, 301–304 (2016).

    Google Scholar 

  193. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02599129 (2017).

  194. Craiglow, B. G. & King, B. A. Killing two birds with one stone: oral tofacitinib reverses alopecia universalis in a patient with plaque psoriasis. J. Invest. Dermatol. 134, 2988–2990 (2014).

    Google Scholar 

  195. Dhayalan, A. & King, B. A. Tofacitinib citrate for the treatment of nail dystrophy associated with alopecia universalis. JAMA Dermatol. 152, 492–493 (2016).

    Google Scholar 

  196. Gupta, A. K., Carviel, J. L. & Abramovits, W. Efficacy of tofacitinib in treatment of alopecia universalis in two patients. J. Eur. Acad. Dermatol. Venereol. 30, 1373–1378 (2016).

    Google Scholar 

  197. Crispin, M. K. et al. Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight 1, e89776 (2016).

    Google Scholar 

  198. Liu, L. Y., Craiglow, B. G., Dai, F. & King, B. A. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J. Eur. Acad. Dermatol. Venereol. 76, 22–28 (2016).

    Google Scholar 

  199. Pieri, L., Guglielmelli, P. & Vannucchi, A. M. Ruxolitinib-induced reversal of alopecia universalis in a patient with essential thrombocythemia. Am. J. Hematol. 90, 82–83 (2015).

    Google Scholar 

  200. Mackay-Wiggan, J. et al. Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight 1, e89790 (2016).

    Google Scholar 

  201. Jabbari, A. et al. Reversal of alopecia areata following treatment with the JAK1/2 inhibitor baricitinib. EBioMedicine 2, 351–355 (2015).

    Google Scholar 

  202. Anzengruber, F. et al. Transient efficacy of tofacitinib in alopecia areata universalis. Case Rep. Dermatol. 8, 102–106 (2016).

    Google Scholar 

  203. Li, Y. et al. Hair regrowth in alopecia areata patients following stem cell educator therapy. BMC Med. 13, 87 (2015).

    Google Scholar 

  204. Sperling, L. C., Cowper, S. E. & Knopp, E. A. An Atlas of Hair Pathology with Clinical Correlations 2nd edn (CRC Press, 2012).

    Google Scholar 

  205. Navarini, A. A., Nobbe, S. & Trü eb, R. M. Marie Antoinette syndrome. Arch. Dermatol. 145, 656 (2009).

    Google Scholar 

  206. Forstbauer, L. M. et al. Genome-wide pooling approach identifies SPATA5 as a new susceptibility locus for alopecia areata. Eur. J. Hum. Genet. 20, 326–332 (2012).

    Google Scholar 

  207. Jagielska, D. et al. Follow-up study of the first genome-wide association scan in alopecia areata: IL13 and KIAA0350 as susceptibility loci supported with genome-wide significance. J. Invest. Dermatol. 132, 2192–2197 (2012).

    Google Scholar 

  208. Messenger, A. G., Sinclair, R. D., Farrant, P. & de Berker, D. A. R. in Rook's Textbook of Dermatology 9th edn (eds Griffiths, C., Barker, J., Bleiker, T., Chalmers, R. & Creamer, D. ) 89 (Wiley-Blackwell, 2016).

    Google Scholar 

  209. Bohm, M. in European Handbook of Dermatological Treatments (eds Katsambas, A. D., Lotti, T. M., Dessinioti, C, & D'Erme, A. M. ) 45–53 (Springer Berlin Heidelberg, 2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the US NIH (R01AR056635 to J.P.S.; and P50AR070588, R01AR065963, R01AR056016, U01AR067173 and R21AR061881 to A.M.C.) and the National Alopecia Areata Foundation (L.E.K., A.M.C. and J.P.S.). Core facilities at The Jackson Laboratory were supported by the US National Cancer Institute (CA034196).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (all authors); Epidemiology (C.H.P., L.E.K. and J.P.S.); Mechanisms/pathophysiology (C.H.P., L.E.K., A.M.C. and J.P.S.); Diagnosis, screening and prevention (A.G.M., A.M.C., L.E.K. and J.P.S.); Management (L.E.K., A.G.M. and A.M.C.); Quality of life (A.G.M., L.E.K. and J.P.S.); Outlook (L.E.K., A.G.M. and J.P.S.); Overview of the Primer (J.P.S.).

Corresponding author

Correspondence to John P. Sundberg.

Ethics declarations

Competing interests

L.E.K. is on the scientific advisory committee for the National Alopecia Areata Foundation (NAAF) and the Cicatricial Alopecia Research Foundation (CARF). A.M.C. is on the scientific advisory committee for the NAAF and is a consultant for Aclaris Therapeutics, Inc. J.P.S. has or has had sponsored research contract with Biocon and the NAAF for preclinical trials using mouse models for alopecia areata, and is on the scientific advisory committee for the NAAF and is Chairman for the CARF. C.H.P. and A.G.M. have no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratt, C., King, L., Messenger, A. et al. Alopecia areata. Nat Rev Dis Primers 3, 17011 (2017). https://doi.org/10.1038/nrdp.2017.11

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2017.11

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing