Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hypothalamic AMPK: a canonical regulator of whole-body energy balance

Key Points

  • Cells sense ratios of adenine nucleotides (AMP and ADP) to monitor energy levels

  • AMP-activated protein kinase (AMPK) is the main cellular energy sensor; by monitoring changes in the ratios between AMP and ATP, and ADP and ATP, AMPK is activated by conditions that increase ATP utilization

  • AMPK mediates a global counter-regulatory response by reducing ATP-consuming processes, while upregulating ATP-producing processes to maintain energy homeostasis

  • In the hypothalamus and the hindbrain, AMPK acts to regulate whole-body energy status

  • By sensing central and peripheral nutritional and hormonal signals, hypothalamic AMPK modulates all aspects of energy balance, including food intake, energy expenditure/thermogenesis and glucose homeostasis

Abstract

AMP-activated protein kinase (AMPK) has a major role in the modulation of energy balance. AMPK is activated in conditions of low energy, increasing energy production and reducing energy consumption. The AMPK pathway is a canonical route regulating energy homeostasis by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. Current evidence has implicated AMPK in the hypothalamus and hindbrain with feeding, brown adipose tissue thermogenesis and browning of white adipose tissue, through modulation of the sympathetic nervous system, as well as glucose homeostasis. Interestingly, several potential antiobesity and/or antidiabetic agents, some of which are currently in clinical use such as metformin and liraglutide, exert some of their actions by acting on AMPK. Furthermore, the orexigenic and weight-gain effects of commonly used antipsychotic drugs are also mediated by hypothalamic AMPK. Overall, this evidence suggests that hypothalamic AMPK signalling is an interesting target for drug development, but is this approach feasible? In this Review we discuss the current understanding of hypothalamic AMPK and its role in the central regulation of energy balance and metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure, regulation and role of AMPK in the brain.
Figure 2: AMPK in the brain is a canonical regulator of energy balance.

Similar content being viewed by others

References

  1. Carling, D., Mayer, F. V., Sanders, M. J. & Gamblin, S. J. AMP-activated protein kinase: nature's energy sensor. Nat. Chem. Biol. 7, 512–518 (2011).

    CAS  PubMed  Google Scholar 

  2. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell. Biol. 13, 251–262 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hardie, D. G. AMPK — sensing energy while talking to other signaling pathways. Cell Metab. 20, 939–952 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cori, G. T., Colowick, S. P. & Cori, C. F. The action of nucleotides in the disruptive phosphorylation of glycogen. J. Biol. Chem. 123, 381–383 (1938).

    CAS  Google Scholar 

  5. Mansour, T. E., Wakid, N. & Sprouse, H. M. Studies on heart phosphofructokinase. Purification, crystallization, and properties of sheep heart phosphofructokinase. J. Biol. Chem. 241, 1512–1521 (1966).

    CAS  PubMed  Google Scholar 

  6. Setlow, B. & Mansour, T. E. Studies on heart phosphofructokinase. Binding of cyclic adenosine 3′,5′-monophosphate, adenosine monophosphate, and of hexose phosphates to the enzyme. Biochemistry 11, 1478–1486 (1972).

    CAS  PubMed  Google Scholar 

  7. Ramaiah, A., Hathaway, J. A. & Atkinson, D. E. Adenylate as a metabolic regulator. Effect on yeast phosphofructokinase kinetics. J. Biol. Chem. 239, 3619–3622 (1964).

    CAS  PubMed  Google Scholar 

  8. Carling, D., Zammit, V. A. & Hardie, D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217–222 (1987).

    CAS  PubMed  Google Scholar 

  9. Yeh, L. A., Lee, K. H. & Kim, K. H. Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J. Biol. Chem. 255, 2308–2314 (1980).

    CAS  PubMed  Google Scholar 

  10. Ferrer, A., Caelles, C., Massot, N. & Hegardt, F. G. Activation of rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase by adenosine 5′-monophosphate. Biochem. Biophys. Res. Commun. 132, 497–504 (1985).

    CAS  PubMed  Google Scholar 

  11. Hardie, D. G., Carling, D. & Sim, T. R. The AMP-activated protein kinase — a multisubstrate regulator of lipid metabolism. Trends Biochem. Sci. 14, 20–23 (1989).

    CAS  Google Scholar 

  12. Chikahisa, S., Fujiki, N., Kitaoka, K., Shimizu, N. & Sei, H. Central AMPK contributes to sleep homeostasis in mice. Neuropharmacology 57, 369–374 (2009).

    CAS  PubMed  Google Scholar 

  13. Carling, D. & Viollet, B. Beyond energy homeostasis: the expanding role of AMP-activated protein kinase in regulating metabolism. Cell Metab. 21, 799–804 (2015).

    CAS  PubMed  Google Scholar 

  14. Hardie, D. G. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annu. Rev. Nutr. 34, 31–55 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Domenech, E. et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat. Cell Biol. 17, 1304–1316 (2015).

    CAS  PubMed  Google Scholar 

  16. Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500 (2007).

    CAS  PubMed  Google Scholar 

  17. Xiao, B. et al. Structure of mammalian AMPK and its regulation by ADP. Nature 472, 230–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Birk, J. B. & Wojtaszewski, J. F. Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle. J. Physiol. 577, 1021–1032 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Quentin, T. et al. Different expression of the catalytic alpha subunits of the AMP activated protein kinase — an immunohistochemical study in human tissue. Histol. Histopathol. 26, 589–596 (2011).

    PubMed  Google Scholar 

  20. Wu, J. et al. Chemoproteomic analysis of intertissue and interspecies isoform diversity of AMP-activated protein kinase (AMPK). J. Biol. Chem. 288, 35904–35912 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G. & Carling, D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 346, 659–669 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lang, T. et al. Molecular cloning, genomic organization, and mapping of PRKAG2, a heart abundant gamma2 subunit of 5′-AMP-activated protein kinase, to human chromosome 7q36. Genomics 70, 258–263 (2000).

    CAS  PubMed  Google Scholar 

  23. Kim, Y. H. et al. AMPKα modulation in cancer progression: multilayer integrative analysis of the whole transcriptome in Asian gastric cancer. Cancer Res. 72, 2512–2521. (2012).

    CAS  PubMed  Google Scholar 

  24. Fox M. M., Phoenix, K. N., Kopsiaftis, S. G. & Claffey, K. P. AMP-activated protein kinase α 2 isoform suppression in primary breast cancer alters ampk growth control and apoptotic signaling. Genes Cancer 4, 3–14 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Skeffington, K. L., et al. Hypoxia, AMPK activation and uterine artery vasoreactivity. J. Physiol. 594, 1357–1369 (2016).

    CAS  PubMed  Google Scholar 

  26. Turnley, A. M. et al. Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system. J. Neurochem. 72, 1707–1716 (1999).

    CAS  PubMed  Google Scholar 

  27. Culmsee, C., Monnig, J., Kemp, B. E. & Mattson, M. P. AMP-activated protein kinase is highly expressed in neurons in the developing rat brain and promotes neuronal survival following glucose deprivation. J. Mol. Neurosci. 17, 45–58 (2001).

    CAS  PubMed  Google Scholar 

  28. Minokoshi, Y. et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428, 569–574 (2004).

    CAS  PubMed  Google Scholar 

  29. Kim, E. K. et al. C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase. J. Biol. Chem. 279, 19970–19976 (2004).

    CAS  PubMed  Google Scholar 

  30. Dzamko, N. et al. AMPK β1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. J. Biol. Chem. 285, 115–122 (2010).

    CAS  PubMed  Google Scholar 

  31. Gowans, G. J., Hawley, S. A., Ross, F. A. & Hardie, D. G. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 18, 556–566 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).

    CAS  PubMed  Google Scholar 

  33. Hardie, D. G. The LKB1–AMPK pathway — friend or foe in cancer? Cancer Cell 23, 131–132 (2013).

    CAS  PubMed  Google Scholar 

  34. Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

    PubMed  PubMed Central  Google Scholar 

  35. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Alessi, D. R., Sakamoto, K. & Bayascas, J. R. LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137–163 (2006).

    CAS  PubMed  Google Scholar 

  37. Zeqiraj, E., Filippi, B. M., Deak, M., Alessi, D. R. & van Aalten, D. M. Structure of the LKB1–STRAD–MO25 complex reveals an allosteric mechanism of kinase activation. Science 326, 1707–1711 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).

    CAS  PubMed  Google Scholar 

  39. Hurley, R. L. et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005).

    CAS  PubMed  Google Scholar 

  40. Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).

    CAS  PubMed  Google Scholar 

  41. Oakhill, J. S. et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 332, 1433–1435 (2011).

    CAS  PubMed  Google Scholar 

  42. Ross, F. A., Jensen, T. E. & Hardie, D. G. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Biochem. J. 473, 189–199 (2016).

    CAS  PubMed  Google Scholar 

  43. Davies, S. P., Helps, N. R., Cohen, P. T. & Hardie, D. G. 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C α and native bovine protein phosphatase-2AC . FEBS Lett. 377, 421–425 (1995).

    CAS  PubMed  Google Scholar 

  44. Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A. & Carling, D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139–148 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Horman, S. et al. Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase α-subunits in heart via hierarchical phosphorylation of Ser485/491. J. Biol. Chem. 281, 5335–5340 (2006).

    CAS  PubMed  Google Scholar 

  46. Hurley, R. L. et al. Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J. Biol. Chem. 281, 36662–36672 (2006).

    CAS  PubMed  Google Scholar 

  47. Djouder, N. et al. PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis. EMBO J. 29, 469–481 (2010).

    CAS  PubMed  Google Scholar 

  48. Dagon, Y. et al. p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin's effect on food intake. Cell Metab. 16, 104–112 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hawley, S. A. et al. Phosphorylation by Akt within the ST loop of AMPK-α1 down-regulates its activation in tumour cells. Biochem. J. 459, 275–287 (2014).

    CAS  PubMed  Google Scholar 

  50. Qi, J. et al. Downregulation of AMP-activated protein kinase by Cidea-mediated ubiquitination and degradation in brown adipose tissue. EMBO J. 27, 1537–1548 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Egan, D. F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    CAS  PubMed  Google Scholar 

  53. Ruderman, N. B., Carling, D., Prentki, M. & Cacicedo, J. M. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 123, 2764–2772 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Toyama, E. Q. et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kahn, B. B., Alquier, T., Carling, D. & Hardie, D. G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).

    CAS  PubMed  Google Scholar 

  56. Dowell, P., Hu, Z. & Lane, M. D. Monitoring energy balance: metabolites of fatty acid synthesis as hypothalamic sensors. Annu. Rev. Biochem. 74, 515–534 (2005).

    CAS  PubMed  Google Scholar 

  57. López, M., Lelliott, C. J. & Vidal-Puig, A. Hypothalamic fatty acid metabolism: a housekeeping pathway that regulates food intake. Bioessays 29, 248–261 (2007).

    PubMed  Google Scholar 

  58. Lage, R., Dieguez, C., Vidal-Puig, A. & López, M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends Mol. Med. 14, 539–549 (2008).

    CAS  PubMed  Google Scholar 

  59. van Dam, A. D., Kooijman, S., Schilperoort, M., Rensen, P. C. & Boon, M. R. Regulation of brown fat by AMP-activated protein kinase. Trends Mol. Med. 21, 571–579 (2015).

    CAS  PubMed  Google Scholar 

  60. Blanco Martinez de, M. P. et al. Hypothalamic AMP-activated protein kinase as a mediator of whole body energy balance. Rev. Endocr. Metab. Disord. 12, 127–140 (2011).

    Google Scholar 

  61. Schneeberger, M. & Claret, M. Recent insights into the role of hypothalamic AMPK signaling cascade upon metabolic control. Front. Neurosci. 6, 185 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. McCrimmon, R. J. et al. Activation of AMP-activated protein kinase within the ventromedial hypothalamus amplifies counterregulatory hormone responses in rats with defective counterregulation. Diabetes 55, 1755–1760 (2006).

    CAS  PubMed  Google Scholar 

  63. Claret, M. et al. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons. J. Clin. Invest. 117, 2325–2336 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. López, M. et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metab. 7, 389–399 (2008).

    PubMed  Google Scholar 

  65. López, M. et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat. Med. 16, 1001–1008 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Andersson, U. et al. AMP-activated protein kinase plays a role in the control of food intake. J. Biol. Chem. 279, 12005–12008 (2004).

    CAS  PubMed  Google Scholar 

  67. Villena, J. A. et al. Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-α2 subunit. Diabetes 53, 2242–2249 (2004).

    CAS  PubMed  Google Scholar 

  68. Yang, Y., Atasoy, D., Su, H. H. & Sternson, S. M. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell 146, 992–1003 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Claret, M. et al. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice. Diabetes 60, 735–745 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149, 871–885 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Martinez de Morentin, P. B. et al. Nicotine induces negative energy balance through hypothalamic AMP-activated protein kinase. Diabetes 61, 807–817 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Martinez de Morentin, P. B. et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 20, 41–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358 (2014).

    CAS  PubMed  Google Scholar 

  74. Wolfgang, M. J. et al. Regulation of hypothalamic malonyl-CoA by central glucose and leptin. Proc. Natl Acad. Sci. USA 104, 19285–19290 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim, M. S. et al. Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat. Med. 10, 727–733 (2004).

    CAS  PubMed  Google Scholar 

  76. Martin, T. L. et al. Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle. J. Biol. Chem. 281, 18933–18941 (2006).

    CAS  PubMed  Google Scholar 

  77. Gomez-Pinilla, F. & Ying, Z. Differential effects of exercise and dietary docosahexaenoic acid on molecular systems associated with control of allostasis in the hypothalamus and hippocampus. Neuroscience 168, 130–137 (2010).

    CAS  PubMed  Google Scholar 

  78. Stoppa, G. R. et al. Intracerebroventricular injection of citrate inhibits hypothalamic AMPK and modulates feeding behavior and peripheral insulin signaling. J. Endocrinol. 198, 157–168 (2008).

    CAS  PubMed  Google Scholar 

  79. Cha, S. H. & Lane, M. D. Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway. Biochem. Biophys. Res. Commun. 386, 212–216 (2009).

    CAS  PubMed  Google Scholar 

  80. Ropelle, E. R. et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes 57, 594–605 (2008).

    CAS  PubMed  Google Scholar 

  81. Hu, Z., Cha, S. H., Chohnan, S. & Lane, M. D. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc. Natl Acad. Sci. USA 100, 12624–12629 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. López, M. et al. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. Diabetes 55, 1327–1336 (2006).

    PubMed  Google Scholar 

  83. Liu, M. et al. Thiamine deficiency induces anorexia by inhibiting hypothalamic AMPK. Neuroscience 267, 102–113 (2014).

    CAS  PubMed  Google Scholar 

  84. Gao, S. et al. Leptin activates hypothalamic acetyl-CoA carboxylase to inhibit food intake. Proc. Natl Acad. Sci. USA 104, 17358–17363 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Namkoong, C. et al. Enhanced hypothalamic AMP-activated protein kinase activity contributes to hyperphagia in diabetic rats. Diabetes 54, 63–68 (2005).

    CAS  PubMed  Google Scholar 

  86. Quiñones, M. et al. Hypothalamic CaMKKβ mediates glucagon anorectic effect and its diet-induced resistance. Mol. Metab. 4, 961–970 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Seo, S., Ju, S., Chung, H., Lee, D. & Park, S. Acute effects of glucagon-like peptide-1 on hypothalamic neuropeptide and AMP activated kinase expression in fasted rats. Endocr. J. 55, 867–874 (2008).

    CAS  PubMed  Google Scholar 

  88. Akieda-Asai, S., Poleni, P. E. & Date, Y. Coinjection of CCK and leptin reduces food intake via increased CART/TRH and reduced AMPK phosphorylation in the hypothalamus. Am. J. Physiol. Endocrinol. Metab. 306, E1284–E1291 (2014).

    CAS  PubMed  Google Scholar 

  89. Steinberg, G. R. et al. Ciliary neurotrophic factor suppresses hypothalamic AMP-kinase signaling in leptin-resistant obese mice. Endocrinology 147, 3906–3914 (2006).

    CAS  PubMed  Google Scholar 

  90. Kim, H. K. et al. Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight. Diabetes 59, 2772–2780 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Kubota, N. et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab. 6, 55–68 (2007).

    CAS  PubMed  Google Scholar 

  92. Wen, J. P., Liu, C. E., Hu, Y. T., Chen, G. & Lin, L. X. Globular adiponectin regulates energy homeostasis through AMP-activated protein kinase–acetyl-CoA carboxylase (AMPK/ACC) pathway in the hypothalamus. Mol. Cell. Biochem. 344, 109–115 (2010).

    CAS  PubMed  Google Scholar 

  93. Shimizu, H. et al. Glucocorticoids increase neuropeptide Y and agouti-related peptide gene expression via adenosine monophosphate-activated protein kinase signaling in the arcuate nucleus of rats. Endocrinology 149, 4544–4553 (2008).

    CAS  PubMed  Google Scholar 

  94. Kola, B. et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE 3, e1797 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Andrews, Z. B. et al. UCP2 mediates ghrelin's action on NPY/AgRP neurons by lowering free radicals. Nature 454, 846–851 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Lage, R. et al. Ghrelin effects on neuropeptides in the rat hypothalamus depend on fatty acid metabolism actions on BSX but not on gender. FASEB J. 24, 2670–2679 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Vazquez, M. J. et al. Central resistin regulates hypothalamic and peripheral lipid metabolism in a nutritional-dependent fashion. Endocrinology 149, 4534–4543 (2008).

    CAS  PubMed  Google Scholar 

  98. Seoane-Collazo, P. et al. Nicotine improves obesity and hepatic steatosis and ER stress in diet-induced obese male rats. Endocrinology 155, 1679–1689 (2014).

    PubMed  Google Scholar 

  99. Skrede, S. et al. Olanzapine depot formulation in rat: a step forward in modelling antipsychotic-induced metabolic adverse effects. Int. J. Neuropsychopharmacol. 17, 91–104 (2014).

    CAS  PubMed  Google Scholar 

  100. He, M., Zhang, Q., Deng, C., Wang, H. & Huang, X. F. Olanzapine-activated AMPK signaling in the dorsal vagal complex is attenuated by histamine H1 receptor agonist in female rats. Endocrinology 155, 4895–4904 (2014).

    PubMed  Google Scholar 

  101. Tschop, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    CAS  PubMed  Google Scholar 

  102. Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377–388 (2008).

    CAS  PubMed  Google Scholar 

  103. Velasquez, D. A. et al. The central Sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes 60, 1177–1185 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Ramirez, S. et al. Hypothalamic ceramide levels regulated by CPT1C mediate the orexigenic effect of ghrelin. Diabetes 62, 2329–2337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Magnan, C., Levin, B. E. & Luquet, S. Brain lipid sensing and the neural control of energy balance. Mol. Cell. Endocrinol. 418, 3–8 (2015).

    CAS  PubMed  Google Scholar 

  106. Gao, S., Casals, N., Keung, W., Moran, T. H. & Lopaschuk, G. D. Differential effects of central ghrelin on fatty acid metabolism in hypothalamic ventral medial and arcuate nuclei. Physiol. Behav. 118, 165–170 (2013).

    CAS  PubMed  Google Scholar 

  107. Bang, S. et al. AMP-activated protein kinase is physiologically regulated by inositol polyphosphate multikinase. Proc. Natl Acad. Sci. USA 109, 616–620 (2012).

    CAS  PubMed  Google Scholar 

  108. Bang, S., Chen, Y., Ahima, R. S. & Kim, S. F. Convergence of IPMK and LKB1–AMPK signaling pathways on metformin action. Mol. Endocrinol. 28, 1186–1193 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Costanzo-Garvey, D. L. et al. KSR2 is an essential regulator of AMP kinase, energy expenditure, and insulin sensitivity. Cell Metab. 10, 366–378 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Revelli, J. P. et al. Profound obesity secondary to hyperphagia in mice lacking kinase suppressor of ras 2. Obesity (Silver Spring) 19, 1010–1018 (2011).

    CAS  Google Scholar 

  111. Hurtado-Carneiro, V. et al. PAS kinase is a nutrient and energy sensor in hypothalamic areas required for the normal function of AMPK and mTOR/S6K1. Mol. Neurobiol. 50, 314–326 (2014).

    CAS  PubMed  Google Scholar 

  112. Hayes, M. R., Skibicka, K. P., Bence, K. K. & Grill, H. J. Dorsal hindbrain 5′-adenosine monophosphate-activated protein kinase as an intracellular mediator of energy balance. Endocrinology 150, 2175–2182 (2009).

    CAS  PubMed  Google Scholar 

  113. Hayes, M. R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77–83 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Hayes, M. R. et al. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation. Cell Metab. 13, 320–330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Alenazi, F. S., Ibrahim, B. A., Al-Hamami, H., Shakiya, M. & Briski, K. P. Role of estradiol in intrinsic hindbrain AMPK regulation of hypothalamic AMPK, metabolic neuropeptide, and norepinephrine activity and food intake in the female rat. Neuroscience 314, 35–46 (2016).

    CAS  PubMed  Google Scholar 

  116. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    CAS  PubMed  Google Scholar 

  117. Morrison, S. F., Madden, C. J. & Tupone, D. Central eural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab. 19, 741–756 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Contreras, C. et al. The brain and brown fat. Ann. Med. 47, 150–168 (2015).

    CAS  PubMed  Google Scholar 

  119. Perkins, M. N., Rothwell, N. J., Stock, M. J. & Stone, T. W. Activation of brown adipose tissue thermogenesis by the ventromedial hypothalamus. Nature 289, 401–402 (1981).

    CAS  PubMed  Google Scholar 

  120. Viollet, B. et al. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J. Clin. Invest. 111, 91–98 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Xue, B. et al. Neuronal protein tyrosine phosphatase 1B deficiency results in inhibition of hypothalamic AMPK and isoform-specific activation of AMPK in peripheral tissues. Mol. Cell. Biol. 29, 4563–4573 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Mauvais-Jarvis, F., Clegg, D. J. & Hevener, A. L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34, 309–338 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Xu, Y. et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 14, 453–465 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Martinez de Morentin, P. B. et al. Pregnancy induces resistance to the anorectic effect of hypothalamic malonyl-CoA and the thermogenic effect of hypothalamic AMPK inhibition in female rats. Endocrinology 156, 947–960 (2015).

    CAS  PubMed  Google Scholar 

  125. Borgquist, A., Meza, C. & Wagner, E. J. The role of AMP-activated protein kinase in the androgenic potentiation of cannabinoid-induced changes in energy homeostasis. Am. J. Physiol. Endocrinol. Metab. 308, E482–E495 (2015).

    CAS  PubMed  Google Scholar 

  126. Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454, 1000–1004 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schulz, T. J. et al. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495, 379–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Vucetic, M. et al. Interscapular brown adipose tissue metabolic reprogramming during cold acclimation: interplay of HIF-1α and AMPKα. Biochim. Biophys. Acta 1810, 1252–1261 (2011).

    CAS  PubMed  Google Scholar 

  129. Ahmadian, M. et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13, 739–748 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hutchinson, D. S., Chernogubova, E., Dallner, O. S., Cannon, B. & Bengtsson, T. β-adrenoceptors, but not α-adrenoceptors, stimulate AMP-activated protein kinase in brown adipocytes independently of uncoupling protein-1. Diabetologia 48, 2386–2395 (2005).

    CAS  PubMed  Google Scholar 

  131. Mulligan, J. D., Gonzalez, A. A., Stewart, A. M., Carey, H. V. & Saupe, K. W. Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J. Physiol. 580, 677–684 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Pulinilkunnil, T. et al. Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J. Biol. Chem. 286, 8798–8809 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Vila-Bedmar, R., Lorenzo, M. & Fernandez-Veledo, S. Adenosine 5′-monophosphate-activated protein kinase-mammalian target of rapamycin cross talk regulates brown adipocyte differentiation. Endocrinology 151, 980–992 (2010).

    CAS  PubMed  Google Scholar 

  134. Zhang, H. et al. MicroRNA-455 regulates brown adipogenesis via a novel HIF1an–AMPK–PGC1α signaling network. EMBO Rep. 16, 1378–1393 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Dijk, W. et al. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. eLife 4, e08428 (2015).

    PubMed  PubMed Central  Google Scholar 

  136. Bauwens, J. D. et al. Cold tolerance, cold-induced hyperphagia, and nonshivering thermogenesis are normal in α1-AMPK−/− mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R473–R483 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Morton, G. J. & Schwartz, M. W. Leptin and the central nervous system control of glucose metabolism. Physiol. Rev. 91, 389–411 (2011).

    CAS  PubMed  Google Scholar 

  138. Coppari, R. & Bjorbaek, C. Leptin revisited: its mechanism of action and potential for treating diabetes. Nat. Rev. Drug Discov. 11, 692–708 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Song, Z., Levin, B. E., McArdle, J. J., Bakhos, N. & Routh, V. H. Convergence of pre- and postsynaptic influences on glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes 50, 2673–2681 (2001).

    CAS  PubMed  Google Scholar 

  140. Alquier, T., Kawashima, J., Tsuji, Y. & Kahn, B. B. Role of hypothalamic adenosine 5′-monophosphate-activated protein kinase in the impaired counterregulatory response induced by repetitive neuroglucopenia. Endocrinology 148, 1367–1375 (2007).

    CAS  PubMed  Google Scholar 

  141. Han, S. M. et al. Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48, 2170–2178 (2005).

    CAS  PubMed  Google Scholar 

  142. Murphy, B. A., Fakira, K. A., Song, Z., Beuve, A. & Routh, V. H. AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons. Am. J. Physiol. Cell Physiol. 297, C750–C758 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Lee, K., Li, B., Xi, X., Suh, Y. & Martin, R. J. Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior. Endocrinology 146, 3–10 (2005).

    CAS  PubMed  Google Scholar 

  144. McCrimmon, R. J. et al. Key role for AMP-activated protein kinase in the ventromedial hypothalamus in regulating counterregulatory hormone responses to acute hypoglycemia. Diabetes 57, 444–450 (2008).

    CAS  PubMed  Google Scholar 

  145. Canabal, D. D. et al. Glucose, insulin, and leptin signaling pathways modulate nitric oxide synthesis in glucose-inhibited neurons in the ventromedial hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1418–R1428 (2007).

    CAS  PubMed  Google Scholar 

  146. Yang, C. S. et al. Hypothalamic AMP-activated protein kinase regulates glucose production. Diabetes 59, 2435–2443 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Lam, C. K., Chari, M., Rutter, G. A. & Lam, T. K. Hypothalamic nutrient sensing activates a forebrain–hindbrain neuronal circuit to regulate glucose production in vivo. Diabetes 60, 107–113 (2011).

    CAS  PubMed  Google Scholar 

  148. Tanida, M., Yamamoto, N., Shibamoto, T. & Rahmouni, K. Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS ONE 8, e56660 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Tanida, M. et al. Leptin receptor signaling in the hypothalamus regulates hepatic autonomic nerve activity via phosphatidylinositol 3-kinase and AMP-activated protein kinase. J. Neurosci. 35, 474–484 (2015).

    PubMed  PubMed Central  Google Scholar 

  150. Kinote, A. et al. Fructose-induced hypothalamic AMPK activation stimulates hepatic PEPCK and gluconeogenesis due to increased corticosterone levels. Endocrinology 153, 3633–3645 (2012).

    CAS  PubMed  Google Scholar 

  151. Ritter, R. C., Slusser, P. G. & Stone, S. Glucoreceptors controlling feeding and blood glucose: location in the hindbrain. Science 213, 451–452 (1981).

    CAS  PubMed  Google Scholar 

  152. Li, A. J., Wang, Q. & Ritter, S. Participation of hindbrain AMP-activated protein kinase in glucoprivic feeding. Diabetes 60, 436–442 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Bain, J. et al. The selectivity of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Lamy, C. M. et al. Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab. 19, 527–538 (2014).

    CAS  PubMed  Google Scholar 

  155. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    CAS  PubMed  Google Scholar 

  156. Pryor, R. & Cabreiro, F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem. J. 471, 307–322 (2015).

    CAS  PubMed  Google Scholar 

  157. Natali, A. & Ferrannini, E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 49, 434–441 (2006).

    CAS  PubMed  Google Scholar 

  158. Maida, A., Lamont, B. J., Cao, X. & Drucker, D. J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia 54, 339–349 (2011).

    CAS  PubMed  Google Scholar 

  159. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Geerling, J. J. et al. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63, 880–891 (2014).

    CAS  PubMed  Google Scholar 

  161. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    CAS  PubMed  Google Scholar 

  166. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Minokoshi, Y. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343 (2002).

    CAS  PubMed  Google Scholar 

  168. Waterson, M. J. & Horvath, T. L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962–970 (2015).

    CAS  PubMed  Google Scholar 

  169. Finan, B. et al. Targeted estrogen delivery reverses the metabolic syndrome. Nat. Med. 18, 1847–1856 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Shughrue, P. J., Lane, M. V. & Merchenthaler, I. Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J. Comp. Neurol. 388, 507–525 (1997).

    CAS  PubMed  Google Scholar 

  171. Taib, B. et al. Glucose regulates hypothalamic long-chain fatty acid metabolism via AMP-activated kinase (AMPK) in neurons and astrocytes. J. Biol. Chem. 288, 37216–37229 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Yeo, G. S. & Heisler, L. K. Unraveling the brain regulation of appetite: lessons from genetics. Nat. Neurosci. 15, 1343–1349 (2012).

    CAS  PubMed  Google Scholar 

  173. López, M., Alvarez, C. V., Nogueiras, R. & Dieguez, C. Energy balance regulation by thyroid hormones at central level. Trends Mol. Med. 19, 418–427 (2013).

    PubMed  Google Scholar 

  174. Gautron, L., Elmquist, J. K. & Williams, K. W. Neural control of energy balance: translating circuits to therapies. Cell 161, 133–145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Richard, D. Cognitive and autonomic determinants of energy homeostasis in obesity. Nat. Rev. Endocrinol. 11, 489–501 (2015).

    PubMed  Google Scholar 

  176. López, M. & Tena-Sempere, M. Estrogens and the control of energy homeostasis: a brain perspective. Trends Endocrinol. Metab. 26, 411–421 (2015).

    PubMed  Google Scholar 

  177. Nedergaard, J., Bengtsson, T. & Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 293, E444–E452 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement 281854: the ObERStress project (awarded to M.L.). Xunta de Galicia awarded to M.L. (2015-CP079) and R.N. (2015-CP080 and PIE13/00024), Ministry of Economy and Competitiveness (MINECO) Instituto de Salud Carlos III (PI12/01814 and PIE13/00024 awarded to M.L.), MINECO co-funded by the FEDER Program of EU (awarded to M.L. (SAF2015-71026-R); R.N. (BFU2015-70664-R); M.T.S. (BFU2014-2502157581-P); and C.D. (BFU2014-55871-P)). CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of Instituto de Salud Carlos III, Spain.

Author information

Authors and Affiliations

Authors

Contributions

M.L. researched data for the article and wrote the manuscript. All authors made substantial contributions to discussion of the content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Miguel López.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, M., Nogueiras, R., Tena-Sempere, M. et al. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. Nat Rev Endocrinol 12, 421–432 (2016). https://doi.org/10.1038/nrendo.2016.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing