Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1

Abstract

Hematopoietic human colony-stimulating factor 1 (hCSF-1) is essential for innate and adaptive immunity against viral and microbial infections and cancer. The human pathogen Epstein-Barr virus secretes the lytic-cycle protein BARF1 that neutralizes hCSF-1 to achieve immunomodulation. Here we show that BARF1 binds the dimer interface of hCSF-1 with picomolar affinity, away from the cognate receptor–binding site, to establish a long-lived complex featuring three hCSF-1 at the periphery of the BARF1 toroid. BARF1 locks dimeric hCSF-1 into an inactive conformation, rendering it unable to signal via its cognate receptor on human monocytes. This reveals a new functional role for hCSF-1 cooperativity in signaling. We propose a new viral strategy paradigm featuring an allosteric decoy receptor of the competitive type, which couples efficient sequestration and inactivation of the host growth factor to abrogate cooperative assembly of the cognate signaling complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural studies of the BARF1–hCSF-1 assembly.
Figure 2: BARF1 targets hCSF-1 through a new and limited binding site.
Figure 3: BARF1 sequesters hCSF-1 with ultrahigh affinity.
Figure 4: BARF1 is a decoy receptor for hCSF-1 and blocks maturation of monocytes into macrophages.
Figure 5: BARF1 abrogates formation of a cooperative hCSF-1R–hCSF-1 ternary complex.
Figure 6: BARF1 can target mCSF-1 but does not abrogate a mCSF-1RD1–D5–mCSF-1 signaling complex.
Figure 7: BARF1 does not block activation of mCSF-1R by mCSF-1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Young, L.S. & Rickinson, A.B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768 (2004).

    Article  CAS  Google Scholar 

  2. Kutok, J.L. & Wang, F. Spectrum of Epstein-Barr virus-associated diseases. Annu. Rev. Pathol. 1, 375–404 (2006).

    Article  CAS  Google Scholar 

  3. Alcami, A. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3, 36–50 (2003).

    Article  CAS  Google Scholar 

  4. Rivailler, P., Cho, Y.G. & Wang, F. Complete genomic sequence of an Epstein-Barr virus-related herpesvirus naturally infecting a new world primate: a defining point in the evolution of oncogenic lymphocryptoviruses. J. Virol. 76, 12055–12068 (2002).

    Article  CAS  Google Scholar 

  5. Seto, E., Ooka, T., Middeldorp, J. & Takada, K. Reconstitution of nasopharyngeal carcinoma-type EBV infection induces tumorigenicity. Cancer Res. 68, 1030–1036 (2008).

    Article  CAS  Google Scholar 

  6. Seto, E. et al. Epstein-Barr virus (EBV)-encoded BARF1 gene is expressed in nasopharyngeal carcinoma and EBV-associated gastric carcinoma tissues in the absence of lytic gene expression. J. Med. Virol. 76, 82–88 (2005).

    Article  CAS  Google Scholar 

  7. Orlova, N., Fogg, M.H., Carville, A. & Wang, F. Antibodies to lytic infection proteins in lymphocryptovirus-infected rhesus macaques: a model for humoral immune responses to Epstein-Barr virus infection. Clin. Vaccine Immunol. 18, 1427–1434 (2011).

    Article  CAS  Google Scholar 

  8. Wei, M.X. & Ooka, T. A transforming function of the BARF1 gene encoded by Epstein-Barr virus. EMBO J. 8, 2897–2903 (1989).

    Article  CAS  Google Scholar 

  9. Wei, M.X., Moulin, J.C., Decaussin, G., Berger, F. & Ooka, T. Expression and tumorigenicity of the Epstein-Barr virus BARF1 gene in human Louckes B-lymphocyte cell line. Cancer Res. 54, 1843–1848 (1994).

    CAS  PubMed  Google Scholar 

  10. Wei, M.X., deTurenne-Tessier, M., Decaussin, G., Benet, G. & Ooka, T. Establishment of a monkey kidney epithelial cell line with the BARF1 open reading frame from Epstein-Barr virus. Oncogene 14, 3073–3081 (1997).

    Article  CAS  Google Scholar 

  11. Sheng, W., Decaussin, G., Ligout, A., Takada, K. & Ooka, T. Malignant transformation of Epstein-Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein-Barr virus. J. Virol. 77, 3859–3865 (2003).

    Article  Google Scholar 

  12. Sall, A. et al. Mitogenic activity of Epstein-Barr virus-encoded BARF1 protein. Oncogene 23, 4938–4944 (2004).

    Article  CAS  Google Scholar 

  13. Cohen, J.I. & Lekstrom, K. Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J. Virol. 73, 7627–7632 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohashi, M., Orlova, N., Quink, C. & Wang, F. Cloning of the Epstein-Barr virus-related rhesus lymphocryptovirus as a bacterial artificial chromosome: a loss-of-function mutation of the rhBARF1 immune evasion gene. J. Virol. 85, 1330–1339 (2011).

    Article  CAS  Google Scholar 

  15. Strockbine, L.D. et al. The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J. Virol. 72, 4015–4021 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Warren, M.K. & Ralph, P. Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor, and colony stimulating activity. J. Immunol. 137, 2281–2285 (1986).

    CAS  PubMed  Google Scholar 

  17. Lin, J.C., Zhang, Z.X., Chou, T.C., Sim, I. & Pagano, J.S. Synergistic inhibition of Epstein-Barr virus: transformation of B lymphocytes by α and γ interferon and by 3′-azido-3′-deoxythymidine. J. Infect. Dis. 159, 248–254 (1989).

    Article  CAS  Google Scholar 

  18. Hislop, A.D., Taylor, G.S., Sauce, D. & Rickinson, A.B. Cellular responses to viral infection in humans: lessons from Epstein-Barr virus. Annu. Rev. Immunol. 25, 587–617 (2007).

    Article  CAS  Google Scholar 

  19. Hamilton, J.A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    Article  CAS  Google Scholar 

  20. Elegheert, J. et al. Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles. Structure 19, 1762–1772 (2011).

    Article  CAS  Google Scholar 

  21. Tarbouriech, N., Ruggiero, F., de Turenne-Tessier, M., Ooka, T. & Burmeister, W.P. Structure of the Epstein-Barr virus oncogene BARF1. J. Mol. Biol. 359, 667–678 (2006).

    Article  CAS  Google Scholar 

  22. Gorba, C., Miyashita, O. & Tama, F. Normal-mode flexible fitting of high-resolution structure of biological molecules toward one-dimensional low-resolution data. Biophys. J. 94, 1589–1599 (2008).

    Article  CAS  Google Scholar 

  23. Chen, X., Liu, H., Focia, P.J., Shim, A.H. & He, X. Structure of macrophage colony stimulating factor bound to FMS: diverse signaling assemblies of class III receptor tyrosine kinases. Proc. Natl. Acad. Sci. USA 105, 18267–18272 (2008).

    Article  CAS  Google Scholar 

  24. Velazquez-Campoy, A. & Freire, E. Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc. 1, 186–191 (2006).

    Article  CAS  Google Scholar 

  25. Roussel, M.F., Downing, J.R., Rettenmier, C.W. & Sherr, C.J. A point mutation in the extracellular domain of the human CSF-1 receptor (c-fms proto-oncogene product) activates its transforming potential. Cell 55, 979–988 (1988).

    Article  CAS  Google Scholar 

  26. Lupardus, P.J., Birnbaum, M.E. & Garcia, K.C. Molecular basis for shared cytokine recognition revealed in the structure of an unusually high affinity complex between IL-13 and IL-13Rα2. Structure 18, 332–342 (2010).

    Article  CAS  Google Scholar 

  27. Taylor, E.W., Fear, A.L., Bohm, A., Kim, S.H. & Koths, K. Structure-function studies on recombinant human macrophage colony-stimulating factor (M-CSF). J. Biol. Chem. 269, 31171–31177 (1994).

    CAS  PubMed  Google Scholar 

  28. Mantovani, A., Locati, M., Vecchi, A., Sozzani, S. & Allavena, P. Decoy receptors: a strategy to regulate inflammatory cytokines and chemokines. Trends Immunol. 22, 328–336 (2001).

    Article  CAS  Google Scholar 

  29. Morgan, C., Pollard, J.W. & Stanley, E.R. Isolation and characterization of a cloned growth factor dependent macrophage cell line, BAC1.2F5. J. Cell. Physiol. 130, 420–427 (1987).

    Article  CAS  Google Scholar 

  30. Yuzawa, S. et al. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 130, 323–334 (2007).

    Article  CAS  Google Scholar 

  31. Verstraete, K. et al. Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood 118, 60–68 (2011).

    Article  CAS  Google Scholar 

  32. Ma, X. et al. Structural basis for the dual recognition of helical cytokines IL-34 and CSF-1 by CSF-1R. Structure 20, 676–687 (2012).

    Article  CAS  Google Scholar 

  33. Sheng, W., Decaussin, G., Sumner, S. & Ooka, T. N-terminal domain of BARF1 gene encoded by Epstein-Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2. Oncogene 20, 1176–1185 (2001).

    Article  CAS  Google Scholar 

  34. Lemmon, M.A., Pinchasi, D., Zhou, M., Lax, I. & Schlessinger, J. Kit receptor dimerization is driven by bivalent binding of stem cell factor. J. Biol. Chem. 272, 6311–6317 (1997).

    Article  CAS  Google Scholar 

  35. Krumm, B., Meng, X., Li, Y., Xiang, Y. & Deng, J. Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein. Proc. Natl. Acad. Sci. USA 105, 20711–20715 (2008).

    Article  CAS  Google Scholar 

  36. Liu, H. et al. Structural basis of semaphorin-plexin recognition and viral mimicry from Sema7A and A39R complexes with PlexinC1. Cell 142, 749–761 (2010).

    Article  CAS  Google Scholar 

  37. Nuara, A.A. et al. Structure and mechanism of IFN-gamma antagonism by an orthopoxvirus IFN-gamma-binding protein. Proc. Natl. Acad. Sci. USA 105, 1861–1866 (2008).

    Article  CAS  Google Scholar 

  38. Yang, Z., West, A.P. Jr. & Bjorkman, P.J. Crystal structure of TNFα complexed with a poxvirus MHC-related TNF binding protein. Nat. Struct. Mol. Biol. 16, 1189–1191 (2009).

    Article  CAS  Google Scholar 

  39. Yoon, S.I., Jones, B.C., Logsdon, N.J. & Walter, M.R. Same structure, different function: crystal structure of the Epstein-Barr virus IL-10 bound to the soluble IL-10R1 chain. Structure 13, 551–564 (2005).

    Article  CAS  Google Scholar 

  40. Calderwood, M.A. et al. Epstein-Barr virus and virus human protein interaction maps. Proc. Natl. Acad. Sci. USA 104, 7606–7611 (2007).

    Article  CAS  Google Scholar 

  41. Uetz, P. et al. Herpesviral protein networks and their interaction with the human proteome. Science 311, 239–242 (2006).

    Article  CAS  Google Scholar 

  42. Finger, C., Escher, C. & Schneider, D. The single transmembrane domains of human receptor tyrosine kinases encode self-interactions. Sci. Signal. 2, ra56 (2009).

    Article  Google Scholar 

  43. Janowska-Wieczorek, A. et al. Increased circulating colony-stimulating factor-1 in patients with preleukemia, leukemia, and lymphoid malignancies. Blood 77, 1796–1803 (1991).

    CAS  PubMed  Google Scholar 

  44. Chang, V.T. et al. Glycoprotein structural genomics: solving the glycosylation problem. Structure 15, 267–273 (2007).

    Article  CAS  Google Scholar 

  45. Aricescu, A.R. et al. Eukaryotic expression: developments for structural proteomics. Acta Crystallogr. D. Biol. Crystallogr. 62, 1114–1124 (2006).

    Article  CAS  Google Scholar 

  46. Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  47. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  48. Pandit, J. et al. Three-dimensional structure of dimeric human recombinant macrophage colony-stimulating factor. Science 258, 1358–1362 (1992).

    Article  CAS  Google Scholar 

  49. Langer, G., Cohen, S.X., Lamzin, V.S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    Article  CAS  Google Scholar 

  50. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  51. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  52. Nicholls, R.A., Long, F. & Murshudov, G.N. Low-resolution refinement tools in REFMAC5. Acta Crystallogr. D. Biol. Crystallogr. 68, 404–417 (2012).

    Article  CAS  Google Scholar 

  53. Petoukhov, M.V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Crystallogr. 45, 342–350 (2012).

    Article  CAS  Google Scholar 

  54. Lindahl, E., Azuara, C., Koehl, P. & Delarue, M. NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res. 34, W52–W56 (2006).

    Article  CAS  Google Scholar 

  55. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: Semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  56. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  Google Scholar 

  57. van Heel, M., Harauz, G., Orlova, E.V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).

    Article  CAS  Google Scholar 

  58. Fuss, I.J., Kanof, M.E., Smith, P.D. & Zola, H. Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr. Protoc. Immunol. 85, 7.1.1–7.1.8 (2009).

    Google Scholar 

  59. Pouliot, P., Willart, M.A., Hammad, H. & Lambrecht, B.N. Studying the function of dendritic cells in mouse models of asthma. Methods Mol. Biol. 595, 331–349 (2010).

    Article  Google Scholar 

  60. Salic, A. & Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 105, 2415–2420 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Swiss Light Source (SLS), the European Synchrotron Radiation Facility (ESRF) and the Deutsches Elektronen-Synchrotron/European Molecular Biology Laboratory (DESY/EMBL) for synchrotron-beam time allocation and the staff of beamlines X06SA and X06DA (SLS), ID-29 and ID14-3 (ESRF) and X33 (DESY/EMBL) for technical support. Access to these synchrotron facilities is supported by the European Commission under the Seventh Framework Programme: Research Infrastructures, grant agreement number 226716. This research project was supported by grants from the Research Foundation Flanders (FWO) (3G064307, G059710 and G0B7912N) and Ghent University (BOF instrument) to S.N.S.; a Bundesministerium für Bildung und Forschung (BMBF) research grant Sync-Life (Contract: 05K10YEA) to D.I.S.; an ANR-MIME-2006 grant to N.T. and W.P.B.; and an FWO-Odysseus grant to B.N.L. J.E. would like to acknowledge the joint 2011 APS/CCP4 School for assistance with crystallographic structure refinement. We thank the SWITCH Laboratory at VIB-Belgium for access to FFF-MALS facilities and assistance during data collection and analysis. We also thank F. Wang (Harvard University, Boston, Massachusetts, USA) for providing cDNA of rhBARF1 and Christian Gorba (EMBL Hamburg, Hamburg, Germany) for help with the NMA refinement. I.G. thanks the EM platform of the Partnership for Structural Biology (Grenoble) for access to EM equipment. J.E., K.V. and B.V. are supported as research fellows of the FWO. P.P. is a Marie Curie (FP7) post-doctoral fellow.

Author information

Authors and Affiliations

Authors

Contributions

J.E. and N.B. expressed and purified recombinant proteins, with contributions from A.B. J.E. carried out all crystallographic studies with contributions from N.B., A.B. and S.N.S. J.E., N.B. and B.V. carried out ITC with contributions from S.N.S. N.T. and W.P.B. carried out preliminary structural studies on independently produced material. J.E., N.B. and B.V. carried out SPR studies with contributions from N.T. and W.P.B. K.V. provided tools and assistance for tissue culture. P.P. and B.N.L. carried out cellular assays. J.E., A.V.S. and D.I.S. carried out SAXS studies. I.G. carried out EM imaging and data analysis. J.E., N.B., B.V. and S.N.S. established the experimental approach and designed experiments. S.N.S. directed the study. J.E. and S.N.S. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Savvas N Savvides.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 1–3. (PDF 7905 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elegheert, J., Bracke, N., Pouliot, P. et al. Allosteric competitive inactivation of hematopoietic CSF-1 signaling by the viral decoy receptor BARF1. Nat Struct Mol Biol 19, 938–947 (2012). https://doi.org/10.1038/nsmb.2367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing