Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Altered neuronal activity in the ventromedial prefrontal cortex drives nicotine intake escalation

Subjects

Abstract

Nicotine addiction develops after prolonged drug use and escalation of drug intake. However, because of difficulties in demonstrating escalation of nicotine use in rats, its underlying neuroadaptations still remain poorly understood. Here we report that access to unusually high doses of nicotine (i.e., from 30 µg to 240 µg/kg/injection) for self-administration precipitated a rapid and robust escalation of nicotine intake and increased the motivation for the drug in rats. This nicotine intake escalation also induced long-lasting changes in vmPFC neuronal activity both before and during nicotine self-administration. Specifically, after escalation of nicotine intake, basal vmPFC neuronal activity increased above pre-escalation and control activity levels, while ongoing nicotine self-administration restored these neuronal changes. Finally, simulation of the restoring effects of nicotine with in vivo optogenetic inhibition of vmPFC neurons caused a selective de-escalation of nicotine self-administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nicotine intake escaladed with increasing doses of nicotine.
Fig. 2: Nicotine escalation induced convulsive-like behavior.
Fig. 3: Changes in vmPFC neuronal activity during nicotine intake escalation.
Fig. 4: In vivo optogenetic inhibition of vmPFC decreased nicotine self-administration.
Fig. 5: In vivo optogenetic inhibition of vmPFC had no effect on sucrose self-administration.

Similar content being viewed by others

References

  1. World Health Organisation. WHO report on the global tobacco epidemic: raising taxes on tobacco. World Heath Organisation; 2015. p. 52–53.

  2. Birge M, Duffy S, Miler JA, Hajek P. What Proportion of People Who Try One Cigarette Become Daily Smokers? A Meta-Analysis of Representative Surveys. Nicotine Tob Res: Off J Soc Res Nicotine Tob. 2018;20:1427–33.

    Google Scholar 

  3. Weinstein SM, Mermelstein R, Shiffman S, Flay B. Mood variability and cigarette smoking escalation among adolescents. Psychol Addictive Behav: J Soc Psychologists Addictive Behav. 2008;22:504–13.

    Article  Google Scholar 

  4. Villanti AC, Niaura RS, Abrams DB, Mermelstein R. Preventing Smoking Progression in Young Adults: the Concept of Prevescalation. Prev Sci: Off J Soc Prev Res. 2019;20:377–84.

    Article  Google Scholar 

  5. Conklin CA, Perkins KA, Sheidow AJ, Jones BL, Levine MD, Marcus MD. The return to smoking: 1-year relapse trajectories among female smokers. Nicotine Tob Res: Off J Soc Res Nicotine Tob. 2005;7:533–40.

    Article  Google Scholar 

  6. Doubeni CA, Reed G, Difranza JR. Early course of nicotine dependence in adolescent smokers. Pediatrics 2010;125:1127–33.

    Article  PubMed  Google Scholar 

  7. Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point. Science 1998;282:298–300.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed SH, Kenny PJ, Koob GF, Markou A. Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci. 2002;5:625–6.

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed SH, Walker JR, Koob GF. Persistent increase in the motivation to take heroin in rats with a history of drug escalation. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2000;22:413–21.

    Article  CAS  Google Scholar 

  10. Lenoir M, Ahmed SH. Heroin-induced reinstatement is specific to compulsive heroin use and dissociable from heroin reward and sensitization. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2007;32:616–24.

    Article  CAS  Google Scholar 

  11. Lenoir M, Ahmed SH. Supply of a nondrug substitute reduces escalated heroin consumption. Neuropsychopharmacology 2008;33:2272–82.

    Article  PubMed  Google Scholar 

  12. Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF. Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci. 2006;26:5894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McNamara R, Dalley JW, Robbins TW, Everitt BJ, Belin D. Trait-like impulsivity does not predict escalation of heroin self-administration in the rat. Psychopharmacol (Berl). 2011;212:453–64.

    Article  Google Scholar 

  14. Vendruscolo LF, Schlosburg JE, Misra KK, Chen SA, Greenwell TN, Koob GF. Escalation patterns of varying periods of heroin access. Pharm Biochem Behav. 2011;98:570–4.

    Article  CAS  Google Scholar 

  15. Mandyam CD, Wee S, Eisch AJ, Richardson HN, Koob GF. Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. J Neurosci. 2007;27:11442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwendt M, Rocha A, See RE, Pacchioni AM, McGinty JF, Kalivas PW. Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion. J Pharm Exp Ther. 2009;331:555–62.

    Article  CAS  Google Scholar 

  17. Kitamura O, Wee S, Specio SE, Koob GF, Pulvirenti L. Escalation of methamphetamine self-administration in rats: a dose-effect function. Psychopharmacol (Berl). 2006;186:48–53.

    Article  CAS  Google Scholar 

  18. Wee S, Wang Z, Woolverton WL, Pulvirenti L, Koob GF. Effect of aripiprazole, a partial dopamine D2 receptor agonist, on increased rate of methamphetamine self-administration in rats with prolonged session duration. Neuropsychopharmacology 2007;32:2238–47.

    Article  CAS  PubMed  Google Scholar 

  19. Cohen A, Koob GF, George O. Robust escalation of nicotine intake with extended access to nicotine self-administration and intermittent periods of abstinence. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2012;37:2153–60.

    Article  CAS  Google Scholar 

  20. George O, Ghozland S, Azar MR, Cottone P, Zorrilla EP, Parsons LH, et al. CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci USA. 2007;104:17198–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kenny PJ, Markou A. Nicotine self-administration acutely activates brain reward systems and induces a long-lasting increase in reward sensitivity. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2006;31:1203–11.

    Article  CAS  Google Scholar 

  22. Paterson NE, Markou A. Prolonged nicotine dependence associated with extended access to nicotine self-administration in rats. Psychopharmacology 2004;173:64–72.

    Article  CAS  PubMed  Google Scholar 

  23. Goldstein RZ, Volkow ND. Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry. 2002;159:1642–52.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sutherland MT, Riedel MC, Flannery JS, Yanes JA, Fox PT, Stein EA, et al. Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behav Brain Funct. 2016;12:16.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sutherland MT, Carroll AJ, Salmeron BJ, Ross TJ, Stein EA. Insula’s functional connectivity with ventromedial prefrontal cortex mediates the impact of trait alexithymia on state tobacco craving. Psychopharmacology 2013;228:143–55.

    Article  CAS  PubMed  Google Scholar 

  26. Franklin TR, Wetherill RR, Jagannathan K, Johnson B, Mumma J, Hager N, et al. The effects of chronic cigarette smoking on gray matter volume: influence of sex. PloS ONE. 2014;9:e104102.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hanlon CA, Owens MM, Joseph JE, Zhu X, George MS, Brady KT, et al. Lower subcortical gray matter volume in both younger smokers and established smokers relative to non-smokers. Addict. Biol. 2016;21:185–95.

    Article  PubMed  Google Scholar 

  28. Brody AL, Mandelkern MA, Jarvik ME, Lee GS, Smith EC, Huang JC, et al. Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biol Psychiatry. 2004;55:77–84.

    Article  PubMed  Google Scholar 

  29. Bossert JM, Stern AL, Theberge FR, Cifani C, Koya E, Hope BT, et al. Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat Neurosci. 2011;14:420–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van den Oever MC, Spijker S, Smit AB, De Vries TJ. Prefrontal cortex plasticity mechanisms in drug seeking and relapse. Neurosci Biobehav Rev. 2010;35:276–84.

    Article  PubMed  Google Scholar 

  31. Warren BL, Mendoza MP, Cruz FC, Leao RM, Caprioli D, Rubio FJ, et al. Distinct Fos-Expressing Neuronal Ensembles in the Ventromedial Prefrontal Cortex Mediate Food Reward and Extinction Memories. J Neurosci: Off J Soc Neurosci. 2016;36:6691–703.

    Article  CAS  Google Scholar 

  32. Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res. 2015;1628:130–46.

    Article  CAS  PubMed  Google Scholar 

  33. Lubbers BR, van Mourik Y, Schetters D, Smit AB, De Vries TJ, Spijker S. Prefrontal gamma-aminobutyric acid type A receptor insertion controls cue-induced relapse to nicotine seeking. Biol Psychiatry. 2014;76:750–8.

    Article  CAS  PubMed  Google Scholar 

  34. Peters J, Kalivas PW, Quirk GJ. Extinction circuits for fear and addiction overlap in prefrontal cortex. Learn Mem. 2009;16:279–88.

    Article  PubMed  Google Scholar 

  35. Koya E, Uejima JL, Wihbey KA, Bossert JM, Hope BT, Shaham Y. Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology 2009;56:177–85.

    Article  CAS  PubMed  Google Scholar 

  36. Rocha A, Kalivas PW. Role of the prefrontal cortex and nucleus accumbens in reinstating methamphetamine seeking. Eur J Neurosci. 2010;31:903–9.

    Article  PubMed  Google Scholar 

  37. Fowler CD, Kenny PJ. Intravenous nicotine self-administration and cue-induced reinstatement in mice: effects of nicotine dose, rate of drug infusion and prior instrumental training. Neuropharmacology 2011;61:687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mantsch JR, Yuferov V, Mathieu-Kia AM, Ho A, Kreek MJ. Effects of extended access to high versus low cocaine doses on self-administration, cocaine-induced reinstatement and brain mRNA levels in rats. Psychopharmacology 2004;175:26–36.

    Article  CAS  PubMed  Google Scholar 

  39. Richardson NR, Roberts DC. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods. 1996;66:1–11.

    Article  CAS  PubMed  Google Scholar 

  40. Kunisawa N, Iha HA, Shimizu S, Tokudome K, Mukai T, Kinboshi M, et al. Nicotine evokes kinetic tremor by activating the inferior olive via alpha7 nicotinic acetylcholine receptors. Behav Brain Res. 2016;314:173–80.

    Article  CAS  PubMed  Google Scholar 

  41. Girardeau P, Navailles S, Durand A, Vouillac-Mendoza C, Guillem K, Ahmed SH. Relapse to cocaine use persists following extinction of drug-primed craving. Neuropharmacology 2019;155:185–93.

    Article  CAS  PubMed  Google Scholar 

  42. Guillem K, Kravitz AV, Moorman DE, Peoples LL. Orbitofrontal and insular cortex: neural responses to cocaine-associated cues and cocaine self-administration. Synapse 2010;64:1–13.

    Article  CAS  PubMed  Google Scholar 

  43. Guillem K, Peoples LL. Acute effects of nicotine amplify accumbal neural responses during nicotine-taking behavior and nicotine-paired environmental cues. PloS ONE. 2011;6:e24049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Peters J, LaLumiere RT, Kalivas PW. Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci: Off J Soc Neurosci. 2008;28:6046–53.

    Article  CAS  Google Scholar 

  45. Martin-Garcia E, Courtin J, Renault P, Fiancette JF, Wurtz H, Simonnet A, et al. Frequency of cocaine self-administration influences drug seeking in the rat: optogenetic evidence for a role of the prelimbic cortex. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2014;39:2317–30.

    Article  CAS  Google Scholar 

  46. Miner LL, Collins AC. Strain comparison of nicotine-induced seizure sensitivity and nicotinic receptors. Pharmacol Biochem Behav. 1989;33:469–75.

    Article  CAS  PubMed  Google Scholar 

  47. Swan GE, Lessov-Schlaggar CN. The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev. 2007;17:259–73.

    Article  PubMed  Google Scholar 

  48. Le Foll B, Goldberg SR. Effects of nicotine in experimental animals and humans: an update on addictive properties. Handb Exp Pharmacol. 2009;192:335–67.

    Article  Google Scholar 

  49. Iha HA, Kunisawa N, Shimizu S, Tokudome K, Mukai T, Kinboshi M, et al. Nicotine Elicits Convulsive Seizures by Activating Amygdalar Neurons. Front Pharmacol. 2017;8:57.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ahmed SH. Toward an evolutionary basis for resilience to drug addiction. Behav Brain Sci. 2011;34:310–1.

    Article  PubMed  Google Scholar 

  51. O’Dell LE, Chen SA, Smith RT, Specio SE, Balster RL, Paterson NE, et al. Extended access to nicotine self-administration leads to dependence: Circadian measures, withdrawal measures, and extinction behavior in rats. J Pharmacol Exp Ther. 2007;320:180–93.

    Article  PubMed  Google Scholar 

  52. Valentine JD, Hokanson JS, Matta SG, Sharp BM. Self-administration in rats allowed unlimited access to nicotine. Psychopharmacology 1997;133:300–4.

    Article  CAS  PubMed  Google Scholar 

  53. Tiffany ST, Conklin CA, Shiffman S, Clayton RR. What can dependence theories tell us about assessing the emergence of tobacco dependence? Addiction 2004;99:78–86.

    Article  PubMed  Google Scholar 

  54. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci. 2005;8:1442–4.

    Article  CAS  PubMed  Google Scholar 

  55. Homayoun H, Moghaddam B. Bursting of prefrontal cortex neurons in awake rats is regulated by metabotropic glutamate 5 (mGlu5) receptors: rate-dependent influence and interaction with NMDA receptors. Cereb Cortex. 2006;16:93–105.

    Article  PubMed  Google Scholar 

  56. Moghaddam B, Homayoun H. Divergent plasticity of prefrontal cortex networks. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2008;33:42–55.

    Article  Google Scholar 

  57. Parsegian A, Glen WB Jr., Lavin A, See RE. Methamphetamine self-administration produces attentional set-shifting deficits and alters prefrontal cortical neurophysiology in rats. Biol Psychiatry. 2011;69:253–9.

    Article  CAS  PubMed  Google Scholar 

  58. Sun W, Rebec GV. Repeated cocaine self-administration alters processing of cocaine-related information in rat prefrontal cortex. J Neurosci: Off J Soc Neurosci. 2006;26:8004–8.

    Article  CAS  Google Scholar 

  59. Moorman DE, Aston-Jones G. Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction. Proc Natl Acad Sci USA. 2015;112:9472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. LaLumiere RT, Smith KC, Kalivas PW. Neural circuit competition in cocaine-seeking: roles of the infralimbic cortex and nucleus accumbens shell. Eur J Neurosci. 2012;35:614–22.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hughes JR, Gust SW, Skoog K, Keenan RM, Fenwick JW. Symptoms of tobacco withdrawal. A replication and extension. Arch Gen Psychiatry. 1991;48:52–9.

    Article  CAS  PubMed  Google Scholar 

  62. Cohen A, Treweek J, Edwards S, Leao RM, Schulteis G, Koob GF, et al. Extended access to nicotine leads to a CRF1 receptor dependent increase in anxiety-like behavior and hyperalgesia in rats. Addiction Biol. 2015;20:56–68.

    Article  CAS  Google Scholar 

  63. Dierker L, Mermelstein R. Early emerging nicotine-dependence symptoms: a signal of propensity for chronic smoking behavior in adolescents. J Pediatrics. 2010;156:818–22.

    Article  CAS  Google Scholar 

  64. Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 2005;48:175–87.

    Article  CAS  PubMed  Google Scholar 

  65. Quirk GJ, Beer JS. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol. 2006;16:723–7.

    Article  CAS  PubMed  Google Scholar 

  66. Wall PM, Blanchard RJ, Markham C, Yang M, Blanchard DC. Infralimbic D1 receptor agonist effects on spontaneous novelty exploration and anxiety-like defensive responding in CD-1 mice. Behav Brain Res. 2004;152:67–79.

    CAS  PubMed  Google Scholar 

  67. Jackson KJ, Martin BR, Changeux JP, Damaj MI. Differential role of nicotinic acetylcholine receptor subunits in physical and affective nicotine withdrawal signs. J Pharmacol Exp Ther. 2008;325:302–12.

    Article  CAS  PubMed  Google Scholar 

  68. Balerio GN, Aso E, Berrendero F, Murtra P, Maldonado R. Delta9-tetrahydrocannabinol decreases somatic and motivational manifestations of nicotine withdrawal in mice. Eur J Neurosci. 2004;20:2737–48.

    Article  PubMed  Google Scholar 

  69. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

    Article  PubMed  Google Scholar 

  70. Knackstedt LA, LaRowe S, Mardikian P, Malcolm R, Upadhyaya H, Hedden S, et al. The role of cystine-glutamate exchange in nicotine dependence in rats and humans. Biol Psychiatry. 2009;65:841–5.

    Article  CAS  PubMed  Google Scholar 

  71. Koukouli F, Rooy M, Tziotis D, Sailor KA, O’Neill HC, Levenga J, et al. Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nat Med. 2017;23:347–54.

    Article  CAS  PubMed  Google Scholar 

  72. Kenny PJ, Chartoff E, Roberto M, Carlezon WA Jr., Markou A. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: role of the ventral tegmental area and central nucleus of the amygdala. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol. 2009;34:266–81.

    Article  CAS  Google Scholar 

  73. Liechti ME, Lhuillier L, Kaupmann K, Markou A. Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. J Neurosci: Off J Soc Neurosci. 2007;27:9077–85.

    Article  CAS  Google Scholar 

  74. Homayoun H, Jackson ME, Moghaddam B. Activation of metabotropic glutamate 2/3 receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats. J Neurophysiol. 2005;93:1989–2001.

    Article  CAS  PubMed  Google Scholar 

  75. Jackson ME, Homayoun H, Moghaddam B. NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci USA. 2004;101:8467–72.

    Article  CAS  PubMed  Google Scholar 

  76. Poorthuis RB, Bloem B, Schak B, Wester J, de Kock CP, Mansvelder HD. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb Cortex. 2013;23:148–61.

    Article  PubMed  Google Scholar 

  77. Poorthuis RB, Bloem B, Verhoog MB, Mansvelder HD. Layer-specific interference with cholinergic signaling in the prefrontal cortex by smoking concentrations of nicotine. J Neurosci: Off J Soc Neurosci. 2013;33:4843–53.

    Article  CAS  Google Scholar 

  78. Buisson B, Bertrand D.Chronic exposure to nicotine upregulates the human (alpha)4((beta)2 nicotinic acetylcholine receptor function.J Neurosci: Offic J Soc Neurosci. 2001;21:1818–29.

    Article  Google Scholar 

Download references

Funding

This work was supported by the French Research Council (CNRS), the Université de Bordeaux, and the French National Agency (ANR- 15-CE37-0008-01; KG). The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Contributions

KG and SHA designed research and experiments; CVM, KG, and MA performed behavioral experiments and associated data analysis; GRF and KG performed in vivo electrophysiology and optogenetic experiments, and associated data analysis; GRF performed immunohistochemistry; KG and SHA wrote the paper.

Corresponding author

Correspondence to Karine Guillem.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abarkan, M., Fois, G.R., Vouillac-Mendoza, C. et al. Altered neuronal activity in the ventromedial prefrontal cortex drives nicotine intake escalation. Neuropsychopharmacol. 48, 887–896 (2023). https://doi.org/10.1038/s41386-022-01428-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-022-01428-9

This article is cited by

Search

Quick links