Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection

Abstract

The cAMP–PKA and MAP kinase pathways are essential for plant infection in the wheat head blight fungus Fusarium graminearum. To identify upstream receptors of these well-conserved signalling pathways, we systematically characterized the 105 G-protein-coupled receptor (GPCR) genes. Although none were required for vegetative growth, five GPCR genes (GIV1GIV5) significantly upregulated during plant infection were important for virulence. The giv1 mutant was defective in the formation of specialized infection structures known as infection cushions, which was suppressed by application of exogenous cAMP and dominant active FST7 MEK kinase. GIV1 was important for the stimulation of PKA and Gpmk1 MAP kinase by compounds in wheat spikelets. GIV2 and GIV3 were important for infectious growth after penetration. Invasive hyphae of the giv2 mutant were defective in cell-to-cell spreading and mainly grew intercellularly in rachis tissues. Interestingly, the GIV2–GIV5 genes form a phylogenetic cluster with GIV6, which had overlapping functions with GIV5 during pathogenesis. Furthermore, the GIV2–GIV6 cluster is part of a 22-member subfamily of GPCRs, with many of them having in planta-specific upregulation and a common promoter element; however, only three subfamily members are conserved in other fungi. Taken together, F. graminearum has an expanded subfamily of infection-related GPCRs for regulating various infection processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression profiles of the 105 GPCR genes and mutants with defects in plant infection.
Fig. 2: Defects of the giv1, giv2 and giv3 mutant in infection-related morphogenesis and infectious growth.
Fig. 3: Assays for the effects of wheat spikelets on PKA activities and activation of MAPKs.
Fig. 4: Assays for the effects of dominant active FST7 and nuclear localization of Gpmk1–GFP.
Fig. 5: GPCR genes of the EIG subfamily.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author and C. J. (cjiang@nwafu.edu.cn) upon request. RNA-seq data generated in this study are accessible under the accession numbers SRR8568982SRR8568984 and SRR8569386SRR8569394.

References

  1. Goswami, R. S. & Kistler, H. C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 5, 515–525 (2004).

    Article  CAS  Google Scholar 

  2. Brown, N. A., Urban, M., Van De Meene, A. M. L. & Hammond-Kosack, K. E. The infection biology of Fusarium graminearum: Defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol. 114, 555–571 (2010).

    Article  Google Scholar 

  3. Bai, G. H. & Shaner, G. Management and resistance in wheat and barley to Fusarium head blight. Annu. Rev. Phytopathol. 42, 135–161 (2004).

    Article  CAS  Google Scholar 

  4. Strange, R., Majer, J. & Smith, H. The isolation and identification of choline and betaine as the two major components in anthers and wheat germ that stimulate Fusarium graminearum in vitro. Physiol. Plant Pathol. 4, 277–290 (1974).

    Article  CAS  Google Scholar 

  5. Urban, M., Daniels, S., Mott, E. & Hammond-Kosack, K. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum. Plant J. 32, 961–973 (2002).

    Article  CAS  Google Scholar 

  6. Jiang, C., Zhang, X., Liu, H. Q. & Xu, J. R. Mitogen-activated protein kinase signaling in plant pathogenic fungi. PLoS Pathol. 14, e1006875 (2018).

    Article  Google Scholar 

  7. Jenczmionka, N. J., Maier, F. J., Losch, A. P. & Schafer, W. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase Gpmk1. Curr. Genet. 43, 87–95 (2003).

    CAS  PubMed  Google Scholar 

  8. Cuzick, A., Urban, M. & Hammond-Kosack, K. Fusarium graminearum gene deletion mutants map1 and tri5 reveal similarities and differences in the pathogenicity requirements to cause disease on Arabidopsis and wheat floral tissue. New Phytol. 177, 990–1000 (2008).

    Article  Google Scholar 

  9. Hu, S. et al. The cAMP–PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Mol. Plant Microbe Interact. 27, 557–566 (2014).

    Article  CAS  Google Scholar 

  10. Bormann, J., Boenisch, M. J., Bruckner, E., Firat, D. & Schafer, W. The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat. PLoS ONE 9, e91135 (2014).

    Article  Google Scholar 

  11. Nguyen, T. V., Schafer, W. & Bormann, J. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Mol. Plant Microbe Interact. 25, 1142–1156 (2012).

    Article  CAS  Google Scholar 

  12. Hou, Z. M. et al. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant Microbe Interact. 15, 1119–1127 (2002).

    Article  CAS  Google Scholar 

  13. Li, L., Wright, S. J., Krystofova, S., Park, G. & Borkovich, K. A. Heterotrimeric G protein signaling in filamentous fungi. Annu. Rev. Microbiol. 61, 423–452 (2007).

    Article  CAS  Google Scholar 

  14. Yu, H. Y. et al. Functional analyses of heterotrimeric G protein G alpha and G beta subunits in Gibberella zeae. Microbiology 154, 392–401 (2008).

    Article  CAS  Google Scholar 

  15. Cabrera, I. E. et al. Global analysis of predicted G protein-coupled receptor genes in the filamentous fungus, Neurospora crassa. Genes Genom. Genet. 5, 2729–2743 (2015).

    CAS  Google Scholar 

  16. Bieszke, J. A. et al. The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc. Natl Acad. Sci. USA 96, 8034–8039 (1999).

    Article  CAS  Google Scholar 

  17. DeZwaan, T. M., Carroll, A. M., Valent, B. & Sweigard, J. A. Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11, 2013–2030 (1999).

    Article  CAS  Google Scholar 

  18. Kou, Y., Tan, Y. H., Ramanujam, R. & Naqvi, N. I. Structure-function analyses of the Pth11 receptor reveal an important role for CFEM motif and redox regulation in rice blast. New Phytol. 214, 330–342 (2017).

    Article  CAS  Google Scholar 

  19. Lee, J. K., Leslie, J. F. & Bowden, R. L. Expression and function of sex pheromones and receptors in the homothallic ascomycete Gibberella zeae. Eukaryot. Cell 7, 1211–1221 (2008).

    Article  CAS  Google Scholar 

  20. Ma, L. J. et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464, 367–373 (2010).

    Article  CAS  Google Scholar 

  21. Cuomo, C. A. et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317, 1400–1402 (2007).

    Article  CAS  Google Scholar 

  22. Brown, N. A., Schrevens, S., van Dijck, P. & Goldman, G. H. Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat. Microbiol. 3, 402–414 (2018).

    Article  CAS  Google Scholar 

  23. Tucker, S. L. et al. Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. Plant Cell 22, 953–972 (2010).

    Article  CAS  Google Scholar 

  24. Li, L. & Borkovich, K. A. GPR-4 is a predicted G-protein-coupled receptor required for carbon source-dependent asexual growth and development in Neurospora crassa. Eukaryot. Cell 5, 1287–1300 (2006).

    Article  CAS  Google Scholar 

  25. Liu, H. Q. et al. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res. 26, 499–509 (2016).

    Article  CAS  Google Scholar 

  26. Chen, D. P. et al. Sexual specific functions of Tub1 beta-tubulins require stage-specific RNA processing and expression in Fusarium graminearum. Environ. Microbiol. 20, 4009–4021 (2018).

    Article  CAS  Google Scholar 

  27. Boenisch, M. J. & Schafer, W. Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol. 11, 110 (2011).

    Article  CAS  Google Scholar 

  28. Becker, M., Becker, Y., Green, K. & Scott, B. The endophytic symbiont Epichloe festucae establishes an epiphyllous net on the surface of Lolium perenne leaves by development of an expressorium, an appressorium-like leaf exit structure. New Phytol. 211, 240–254 (2016).

    Article  CAS  Google Scholar 

  29. Park, A. R. et al. Functional analyses of regulators of G protein signaling in Gibberella zeae. Fungal Genet. Biol. 49, 511–520 (2012).

    Article  CAS  Google Scholar 

  30. Miller, S. S., Chabot, D. M. P., Ouellet, T., Harris, L. J. & Fedak, G. Use of a Fusarium graminearum strain transformed with green fluorescent protein to study infection in wheat (Triticum aestivum). Can. J. Plant Pathol. 26, 453–463 (2004).

    Article  CAS  Google Scholar 

  31. Zhang, X. W. et al. In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. Plant Cell 24, 5159–5176 (2012).

    Article  CAS  Google Scholar 

  32. Ma, L. S. et al. The Ustilago maydis repetitive effector Rsp3 blocks the antifungal activity of mannose-binding maize proteins. Nat. Commun. 9, 1711 (2018).

    Article  Google Scholar 

  33. Turra, D., El Ghalid, M., Rossi, F. & Di Pietro, A. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527, 521 (2015).

    Article  CAS  Google Scholar 

  34. Min, K. et al. A novel gene, ROA, is required for normal morphogenesis and discharge of ascospores in Gibberella zeae. Eukaryot. Cell 9, 1495–1503 (2010).

    Article  CAS  Google Scholar 

  35. Jiang, C. et al. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environ. Microbiol. 18, 3689–3701 (2016).

    Article  CAS  Google Scholar 

  36. Zhao, X. H., Kim, Y., Park, G. & Xu, J. R. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17, 1317–1329 (2005).

    Article  CAS  Google Scholar 

  37. Wang, C. F. et al. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathol. 7, e1002460 (2011).

    Article  CAS  Google Scholar 

  38. Bruno, K. S., Tenjo, F., Li, L., Hamer, J. E. & Xu, J. R. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryot. Cell 3, 1525–1532 (2004).

    Article  CAS  Google Scholar 

  39. Raviv, Z., Kalie, E. & Seger, R. MEK5 and ERK5 are localized in the nuclei of resting as well as stimulated cells, while MEKK2 translocates from the cytosol to the nucleus upon stimulation. J. Cell Sci. 117, 1773–1784 (2004).

    Article  CAS  Google Scholar 

  40. Wang, Q. et al. Characterization of the two-speed subgenomes of Fusarium graminearum reveals the fast-speed subgenome specialized for adaption and infection. Front. Plant Sci. 8, 140 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Son, H. et al. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathol. 7, e1002310 (2011).

    Article  CAS  Google Scholar 

  42. Kulkarni, R. D., Thon, M. R., Pan, H. Q. & Dean, R. A. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6, 24 (2005).

    Article  Google Scholar 

  43. Li, G. T., Zhou, X. Y. & Xu, J. R. Genetic control of infection-related development in Magnaporthe oryzae. Curr. Opin. Microbiol. 15, 678–684 (2012).

    Article  CAS  Google Scholar 

  44. Sakulkoo, W. et al. A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science 359, 1399 (2018).

    Article  CAS  Google Scholar 

  45. Zhang, X., Liu, W. D., Li, Y., Li, G. T. & Xu, J. R. Expression of HopAI interferes with MAP kinase signalling in Magnaporthe oryzae. Environ. Microbiol. 19, 4190–4204 (2017).

    Article  CAS  Google Scholar 

  46. Zhou, X., Li, G. & Xu, J. R. Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. Methods Mol. Biol. 722, 199–212 (2011).

    Article  CAS  Google Scholar 

  47. Madhani, H. D., Styles, C. A. & Fink, G. R. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91, 673–684 (1997).

    Article  CAS  Google Scholar 

  48. Kang, Z. S., Buchenauer, H., Huang, L. L., Han, Q. M. & Zhang, H. C. Cytological and immunocytochemical studies on responses of wheat spikes of the resistant Chinese cv. Sumai 3 and the susceptible cv. Xiaoyan 22 to infection by Fusarium graminearum. Eur. J. Plant Pathol. 120, 383–396 (2008).

    Article  CAS  Google Scholar 

  49. Chen, X. H., Zhang, L., Zhao, J. X., Wu, J. & Liu, S. H. Study and utilize on a new wheat variety of nation approve Xiaoyan22. Chin. Agri. Sci. Bull. 9, 218–220 (2007).

    Article  Google Scholar 

  50. Jonkers, W., Dong, Y. H., Broz, K. & Kistler, H. C. The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathol. 8, e1002724 (2012).

    Article  CAS  Google Scholar 

  51. Ding, S. L. et al. Transducin beta-like gene FTL1 Is essential for pathogenesis in Fusarium graminearum. Eukaryot. Cell 8, 867–876 (2009).

    Article  CAS  Google Scholar 

  52. Yin, T. et al. The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Mol. Plant Pathol. 19, 552–563 (2018).

    Article  CAS  Google Scholar 

  53. Ramanujam, R. & Naqvi, N. I. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae. PLoS Pathol. 6, e1000897 (2010).

    Article  Google Scholar 

  54. ​Zhang, X., Bian, Z. & Xu, J. R. in Plant Pathogenic Fungi and Oomycetes (eds Ma, W. B. & Wolpert, T.) Ch. 8 (Springer, 2018).

  55. Zheng, D. W. et al. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS ONE 7, e49495 (2012).

    Article  CAS  Google Scholar 

  56. Ding, S. L. et al. The Tig1 histone deacetylase complex regulates infectious growth in the rice blast fungus Magnaporthe oryzae. Plant Cell 22, 2495–2508 (2010).

    Article  CAS  Google Scholar 

  57. Krystofova, S. & Borkovich, K. A. The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gbetagamma dimer required for normal female fertility, asexual development, and galpha protein levels in Neurospora crassa. Eukaryot. Cell 4, 365–378 (2005).

    Article  CAS  Google Scholar 

  58. Kim, H. K. & Yun, S. H. Evaluation of potential reference genes for quantitative RT-PCR analysis in Fusarium graminearum under different culture conditions. Plant Pathol. J. 27, 301–309 (2011).

    Article  CAS  Google Scholar 

  59. Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theor. Biosci. 131, 281–285 (2012).

    Article  CAS  Google Scholar 

  60. Cleries, R. et al. BootstRatio: A web-based statistical analysis of fold-change in qPCR and RT-qPCR data using resampling methods. Comput. Biol. Med. 42, 438–445 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank W. Wang, R. Hei, H. Jiang, J. Ren, P. Huang, C. Wu and C. Wang for assistance with generating GPCR gene deletion mutants. We also thank L. Dunkle and P. Goldsbrough at Purdue University for critical reading of this manuscript. This work was supported by grants from the National Natural Science Foundation of China (no. 31772114), NSWBSI, USDA NIFA (Award no. 2013-68004-20378), Tang Scholar and the Natural Science Basic Research Plan in Shaanxi Province of China (no. 2017JM3001).

Author information

Authors and Affiliations

Authors

Contributions

J.-R.X. and C.J. designed the research and wrote the paper. C.J., S.C., Z.W., H.X., J.L., G.W., M.D., C.G., C.F. and C.H. performed the experiments. C.J., H.L. and Q.W. analysed the data.

Corresponding author

Correspondence to Jin-Rong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–23, Supplementary References and Supplementary Table legends.

Reporting Summary

Supplementary Data

Supplementary Tables 1–6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Cao, S., Wang, Z. et al. An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection. Nat Microbiol 4, 1582–1591 (2019). https://doi.org/10.1038/s41564-019-0468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0468-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology