Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites

Abstract

Solid-state magic-angle spinning NMR spectroscopy is a powerful technique to probe atomic-level microstructure and structural dynamics in metal halide perovskites. It can be used to measure dopant incorporation, phase segregation, halide mixing, decomposition pathways, passivation mechanisms, short-range and long-range dynamics, and other local properties. This Review describes practical aspects of recording solid-state NMR data on halide perovskites and how these afford unique insights into new compositions, dopants and passivation agents. We discuss the applicability, feasibility and limitations of 1H, 13C, 15N, 14N, 133Cs, 87Rb, 39K, 207Pb, 119Sn, 113Cd, 209Bi, 115In, 19F and 2H NMR in typical experimental scenarios. We highlight the pivotal complementary role of solid-state mechanosynthesis, which enables highly sensitive NMR studies by providing large quantities of high-purity materials of arbitrary complexity and of chemical shifts calculated using density functional theory. We examine the broader impact of solid-state NMR on materials research and how its evolution over seven decades has benefitted structural studies of contemporary materials such as halide perovskites. Finally, we summarize some of the open questions in perovskite optoelectronics that could be addressed using solid-state NMR. We, thereby, hope to stimulate wider use of this technique in materials and optoelectronics research.

Key points

  • Solid-state NMR is an excellent method to study the local structure of metal halide perovskite components and their dopants.

  • NMR does not require long-range order and, therefore, can identify and quantify amorphous components.

  • NMR can be used to study dynamics occurring on the picosecond to second timescale.

  • Most nuclei in the periodic table can be studied using solid-state NMR.

  • Typical NMR sample size is between 1 and 100 mg.

  • Interactions between perovskites and passivation agents can be readily studied.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Challenges related to studying the structure and dynamics of metal halide perovskites.
Fig. 2: Typical longitudinal relaxation times T1 for nuclei in metal halide perovskites.
Fig. 3: Identification, quantification and proximity of organic cations in solid metal halide perovskites.
Fig. 4: 13C and 15N cryo-NMR tell us phase compositions of hybrid metal halide perovskites.
Fig. 5: 13C and 15N cryo-NMR reveal the phase composition of layered haloplumbate materials.
Fig. 6: Speciation of diamagnetic metal ion dopants in metal halide perovskites.
Fig. 7: Speciation of paramagnetic metal ion dopants in metal halide perovskites.
Fig. 8: 207Pb NMR of solid Pb halide perovskites reveals halide coordination and mixing.
Fig. 9: Solid-state NMR of B-site cations in metal halide perovskites.
Fig. 10: Incorporation of dopants and motional degrees of freedom as probed by nuclei sensitive to dynamics.

Similar content being viewed by others

References

  1. Weber, D. CH3NH3PbX3, a Pb(ii)-system with cubic perovskite structure. Z. Naturforsch. B Anorg. Chem. Org. Chem. 33, 1443–1445 (1978).

    Google Scholar 

  2. Wasylishen, R. E., Knop, O. & Macdonald, J. B. Cation rotation in methylammonium lead halides. Solid State Commun. 56, 581–582 (1985). The first study of A-site cation dynamics in metal halide perovskites.

    Article  CAS  Google Scholar 

  3. Poglitsch, A. & Weber, D. Dynamic disorder in methylammoniumtrihalogenoplumbates(ii) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987).

    Article  CAS  Google Scholar 

  4. Onodayamamuro, N., Matsuo, T. & Suga, H. Calorimetric and IR spectroscopic studies of phase-transitions in methylammonium trihalogenoplumbates(ii). J. Phys. Chem. Solids 51, 1383–1395 (1990).

    Article  CAS  Google Scholar 

  5. Furukawa, Y. & Nakamura, D. Cationic dynamics in the crystalline phases of (CH3NH3)PbX3 (X: Cl, Br). Z. Naturforsch. A Phys. Sci. 44, 1122–1126 (1989).

    Article  CAS  Google Scholar 

  6. Knop, O., Wasylishen, R. E., White, M. A., Cameron, T. S. & Van Oort, M. J. M. Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X=chlorine, bromine, iodine) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68, 412–22 (1990).

    Article  CAS  Google Scholar 

  7. Xu, Q., Eguchi, T., Nakayama, H., Nakamura, N. & Kishita, M. Molecular motions and phase-transitions in solid CH3NH3PbCl3, CH3NH3PbBr3, CH3NH3PbI3, as studied by NMR and NQR. Z. Naturforsch. A Phys. Sci. 46, 240–246 (1991).

    Article  CAS  Google Scholar 

  8. Xu, Q., Eguchi, T. & Nakayama, H. Molecular motions in solid CD3NH3PbBr3 as studied by 1H NMR. Bull. Chem. Soc. Jpn. 65, 2264–2266 (1992).

    Article  CAS  Google Scholar 

  9. Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

    Article  CAS  Google Scholar 

  10. Auger, V. & Karantassis, T. Sels complexes de l’iodure stanneux avec les iodures de rubidium et de caesium. Compt. Rend. 181, 665–666 (1925).

    CAS  Google Scholar 

  11. Møller, C. in Matematisk-fysiske Meddelelser (København, 1959).

  12. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Etgar, L. et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2020).

  16. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Ma, D. et al. Chloride insertion–immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J. Am. Chem. Soc. 142, 5126–5134 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Kubicki, D. J. et al. Phase segregation in Cs-, Rb- and K-doped mixed-cation (MA)x(FA)1−xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 14173–14180 (2017). The first study of Cs+, Rb+ and K+ speciation in multicomponent metal halide perovskites on the atomic level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kubicki, D. J. et al. Formation of stable mixed guanidinium–methylammonium phases with exceptionally long carrier lifetimes for high-efficiency lead iodide-based perovskite photovoltaics. J. Am. Chem. Soc. 140, 3345–3351 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Xiang, W. et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3, 205–214 (2019).

    Article  CAS  Google Scholar 

  22. Kubicki, D. J. et al. Doping and phase segregation in Mn2+- and Co2+-doped lead halide perovskites from 133Cs and 1H NMR relaxation enhancement. J. Mater. Chem. A 7, 2326–2333 (2019). A study on the use of solid-state NMR to detect paramagnetic dopants in metal halide perovskites.

    Article  CAS  Google Scholar 

  23. Franssen, W. M. J., Bruijnaers, B. J., Portengen, V. H. L. & Kentgens, A. P. M. Dimethylammonium incorporation in lead acetate based MAPbI3 perovskite solar cells. ChemPhysChem 19, 3107–3115 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Karmakar, A., Bernard, G. M., Meldrum, A., Oliynyk, A. O. & Michaelis, V. K. Tailorable indirect to direct band-gap double perovskites with bright white-light emission: decoding chemical structure using solid-state NMR. J. Am. Chem. Soc. 142, 10780–10793 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Karmakar, A., Dodd, M. S., Agnihotri, S., Ravera, E. & Michaelis, V. K. Cu(ii)-doped Cs2SbAgCl6 double perovskite: a lead-free, low-bandgap material. Chem. Mater. 30, 8280–8290 (2018).

    Article  CAS  Google Scholar 

  26. Kubicki, D. J. et al. Phase segregation in potassium-doped lead halide perovskites from 39K solid-state NMR at 21.1T. J. Am. Chem. Soc. 140, 7232–7238 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Xiang, W. et al. Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells. Nat. Commun. 10, 4686 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rosales, B. A. et al. Persistent dopants and phase segregation in organolead mixed-halide perovskites. Chem. Mater. 28, 6848–6859 (2016). Demonstration of solid-state 207Pb NMR for studying halide miscibility and phase segregation in mixed-halide metal halide perovskites.

    Article  CAS  Google Scholar 

  29. Askar, A. M. et al. Composition-tunable formamidinium lead mixed halide perovskites via solvent-free mechanochemical synthesis: decoding the Pb environments using solid-state NMR spectroscopy. J. Phys. Chem. Lett. 9, 2671–2677 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Karmakar, A. et al. Mechanochemical synthesis of methylammonium lead mixed–halide perovskites: unraveling the solid-solution behavior using solid-state NMR. Chem. Mater. 30, 2309–2321 (2018).

    Article  CAS  Google Scholar 

  31. Kubicki, D. J. et al. Local structure and dynamics in methylammonium, formamidinium, and cesium tin(ii) mixed-halide perovskites from 119Sn solid-state NMR. J. Am. Chem. Soc. 142, 7813–7826 (2020). A study exploiting 119Sn solid-state NMR to reveal local structure, degradation pathways, halide dynamics and spontaneous halide mixing in tin halide perovskites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Alharbi, E. A. et al. Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells. Nat. Commun. 10, 3008 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Alanazi, A. Q. et al. Atomic-level microstructure of efficient formamidinium-based perovskite solar cells stabilized by 5-ammonium valeric acid iodide revealed by multinuclear and two-dimensional solid-state NMR. J. Am. Chem. Soc. 141, 17659–17669 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Bi, D. et al. Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat. Commun. 9, 4482 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hong, L. et al. Guanine-stabilized formamidinium lead iodide perovskites. Angew. Chem. Int. Ed. 59, 4691–4697 (2019).

    Article  CAS  Google Scholar 

  36. Askar, A. M., Bernard, G. M., Wiltshire, B., Shankar, K. & Michaelis, V. K. Multinuclear magnetic resonance tracking of hydro, thermal, and hydrothermal decomposition of CH3NH3PbI3. J. Phys. Chem. C 121, 1013–1024 (2017).

    Article  CAS  Google Scholar 

  37. Kubicki, D. J. et al. Cation dynamics in mixed-cation (MA)x(FA)1−xPbI3 hybrid perovskites from solid-state NMR. J. Am. Chem. Soc. 139, 10055–10061 (2017). The first study describing the dynamics of different A-site cations probed independently within the same mixed-cation material using 14N solid-state magic-angle spinning NMR.

    Article  CAS  PubMed  Google Scholar 

  38. Franssen, W. M. J., van Es, S. G. D., Dervisoglu, R., de Wijs, G. A. & Kentgens, A. P. M. Symmetry, dynamics, and defects in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 8, 61–66 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Bernard, G. M. et al. Methylammonium cation dynamics in methylammonium lead halide perovskites: a solid-state NMR perspective. J. Phys. Chem. A 122, 1560–1573 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Senocrate, A. et al. The nature of ion conduction in methylammonium lead iodide: a multimethod approach. Angew. Chem. Int. Ed. 56, 7755–7759 (2017).

    Article  CAS  Google Scholar 

  41. Fabini, D. H. et al. Universal dynamics of molecular reorientation in hybrid lead iodide perovskites. J. Am. Chem. Soc. 139, 16875–16884 (2017). A detailed multimodal study of FA+ dynamics in FAPbI3 between 4 and 340 K.

    Article  CAS  PubMed  Google Scholar 

  42. Roiland, C. et al. Multinuclear NMR as a tool for studying local order and dynamics in CH3NH3PbX3 (X=Cl, Br, I) hybrid perovskites. Phys. Chem. Chem. Phys. 18, 27133–27142 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Franssen, W. M. J. & Kentgens, A. P. M. Solid–state NMR of hybrid halide perovskites. Solid State Nucl. Magn. Reson. 100, 36–44 (2019). A comprehensive review of the use of solid-state NMR to characterize the atomic-level structure of metal halide perovskites.

    Article  CAS  PubMed  Google Scholar 

  44. Piveteau, L., Morad, V. & Kovalenko, M. V. Solid-state NMR and NQR spectroscopy of lead-halide perovskite materials. J. Am. Chem. Soc. 142, 19413–19437 (2020). A comprehensive review of solid-state NMR and nuclear quadrupole resonance to characterize atomic-level structure of metal halide perovskites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Prochowicz, D. et al. Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency. J. Mater. Chem. A 3, 20772–20777 (2015). The first report of solid-state mechanosynthesis of metal halide perovskites.

    Article  CAS  Google Scholar 

  46. Prochowicz, D. et al. Mechanosynthesis of pure phase mixed-cation MAxFA1−xPbI3 hybrid perovskites: photovoltaic performance and electrochemical properties. Sustain. Energy Fuels 1, 689–693 (2017).

    Article  CAS  Google Scholar 

  47. Rosales, B. A., Wei, L. & Vela, J. Synthesis and mixing of complex halide perovskites by solvent-free solid-state methods. J. Solid State Chem. 271, 206–215 (2019).

    Article  CAS  Google Scholar 

  48. Prochowicz, D., Saski, M., Yadav, P., Grätzel, M. & Lewin´ski, J. Mechanoperovskites for photovoltaic applications: preparation, characterization, and device fabrication. Acc. Chem. Res. 52, 3233–3243 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Milic´, J. V. et al. Supramolecular engineering for formamidinium-based layered 2D perovskite solar cells: structural complexity and dynamics revealed by solid-state NMR spectroscopy. Adv. Energy Mater. 9, 1900284 (2019).

    Article  CAS  Google Scholar 

  50. Karmakar, A. et al. Mechanochemical synthesis of 0D and 3D cesium lead mixed halide perovskites. Chem. Commun. 55, 5079–5082 (2019).

    Article  CAS  Google Scholar 

  51. Saski, M., Prochowicz, D., Marynowski, W. & Lewin´ski, J. Mechanosynthesis, optical, and morphological properties of MA, FA, Cs-SnX3 (X = I, Br) and phase-pure mixed-halide MASnIxBr3−x perovskites. Eur. J. Inorg. Chem. 2019, 2680–2684 (2019).

    Article  CAS  Google Scholar 

  52. Palazon, F. et al. Mechanochemical synthesis of inorganic halide perovskites: evolution of phase-purity, morphology, and photoluminescence. J. Mater. Chem. C 7, 11406–11410 (2019).

    Article  CAS  Google Scholar 

  53. Zhu, Z.-Y. et al. Solvent-free mechanosynthesis of composition-tunable cesium lead halide perovskite quantum dots. J. Phys. Chem. Lett. 8, 1610–1614 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Protesescu, L., Yakunin, S., Nazarenko, O., Dirin, D. N. & Kovalenko, M. V. Low-cost synthesis of highly luminescent colloidal lead halide perovskite nanocrystals by wet ball milling. ACS Appl. Nano Mater. 1, 1300–1308 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Li, T., Dunlap-Shohl, W. A., Han, Q. & Mitzi, D. B. Melt processing of hybrid organic–inorganic lead iodide layered perovskites. Chem. Mater. 29, 6200–6204 (2017).

    Article  CAS  Google Scholar 

  57. Hanrahan, M. P., Men, L., Rosales, B. A., Vela, J. & Rossini, A. J. Sensitivity-enhanced 207Pb solid-state NMR spectroscopy for the rapid, non-destructive characterization of organolead halide perovskites. Chem. Mater. 30, 7005–7015 (2018).

    Article  CAS  Google Scholar 

  58. Bloch, F. Nuclear induction. Phys. Rev. 70, 460–474 (1946).

    Article  CAS  Google Scholar 

  59. Purcell, E., Torrey, H. & Pound, R. Resonance absorption by nuclear magnetic moments in a solid. Phys. Rev. 69, 37–38 (1946).

    Article  CAS  Google Scholar 

  60. Reif, B., Ashbrook, S. E., Emsley, L. & Hong, M. Solid-state NMR spectroscopy. Nat. Rev. Methods Prim. 1, 2 (2021). An accessible introduction to solid-state NMR spectroscopy.

    Article  Google Scholar 

  61. Gil, A. M. & Neto, C. P. Solid-state NMR studies of wood and other lignocellulosic materials. Annu. Rep. NMR Spectrosc. 37, 75–117 (1999).

    Article  CAS  Google Scholar 

  62. Terrett, O. M. et al. Molecular architecture of softwood revealed by solid-state NMR. Nat. Commun. 10, 4978 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Blümich, B., Hagemeyer, A., Schaefer, D., Schmidt-Rohr, K. & Spiess, H. W. Solid-state NMR spectroscopy in polymer science. Adv. Mater. 2, 72–81 (1990).

    Article  Google Scholar 

  64. MacKenzie, K. J. D. & Smith, M. E. Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials (Elsevier, 2002).

  65. Ashbrook, S. E., Griffin, J. M. & Johnston, K. E. Recent advances in solid-state nuclear magnetic resonance spectroscopy. Annu. Rev. Anal. Chem. 11, 485–508 (2018).

    Article  Google Scholar 

  66. Moran, R. F. et al. Ensemble-based modeling of the NMR spectra of solid solutions: cation disorder in Y2(Sn,Ti)2O7. J. Am. Chem. Soc. 141, 17838–17846 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Youngman, R. NMR spectroscopy in glass science: a review of the elements. Materials 11, 476 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  68. Tricot, G., Alpysbay, L. & Doumert, B. Solid state NMR: a powerful tool for the characterization of borophosphate glasses. Molecules 25, 428 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  69. Jiang, J. et al. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science 333, 1131–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Peng, L., Huo, H., Liu, Y. & Grey, C. P. 17O magic angle spinning NMR studies of Brønsted acid sites in zeolites HY and HZSM-5. J. Am. Chem. Soc. 129, 335–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Li, S. & Deng, F. in Zeolites in Sustainable Chemistry: Synthesis, Characterization and Catalytic Applications (eds Xiao, F.-S. & Meng, X.) 231–268 (Springer, 2016).

  72. Kong, X. et al. Mapping of functional groups in metal–organic frameworks. Science 341, 882–885 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Lucier, B. E. G., Chen, S. & Huang, Y. Characterization of metal–organic frameworks: unlocking the potential of solid-state NMR. Acc. Chem. Res. 51, 319–330 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Brunner, E. & Rauche, M. Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal–organic frameworks. Chem. Sci. 11, 4297–4304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smith, B. J. et al. Origins of saccharide-dependent hydration at aluminate, silicate, and aluminosilicate surfaces. Proc. Natl Acad. Sci. USA 108, 8949–8954 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kumar, A. et al. The atomic-level structure of cementitious calcium silicate hydrate. J. Phys. Chem. C 121, 17188–17196 (2017).

    Article  CAS  Google Scholar 

  77. Walkley, B. & Provis, J. L. Solid-state nuclear magnetic resonance spectroscopy of cements. Mater. Today Adv. 1, 100007 (2019).

    Article  Google Scholar 

  78. Liu, T. et al. Cycling Li–O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Pecher, O., Carretero-González, J., Griffith, K. J. & Grey, C. P. Materials’ methods: NMR in battery research. Chem. Mater. 29, 213–242 (2017).

    Article  CAS  Google Scholar 

  80. Blanc, F., Leskes, M. & Grey, C. P. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Acc. Chem. Res. 46, 1952–1963 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Yesinowski, J. P. in Solid State NMR (ed. Chan, J. C. C.) 229–312 (Springer, 2012).

  82. Haase, J., Curro, N. J., Stern, R. & Slichter, C. P. New methods for NMR of cuprate superconductors. Phys. Rev. Lett. 81, 1489–1492 (1998).

    Article  CAS  Google Scholar 

  83. F. Smith, D. & P. Slichter, C. in Novel NMR and EPR techniques (eds Dolinšek, J., Vilfan, M. & Žumer, S.) 243–295 (Springer, 2006).

  84. Buzea, C. & Yamashita, T. Review of the superconducting properties of MgB2. Supercond. Sci. Technol. 14, R115–R146 (2001).

    Article  CAS  Google Scholar 

  85. Cadars, S. et al. Atomic positional versus electronic order in semiconducting ZnSe nanoparticles. Phys. Rev. Lett. 103, 136802 (2009).

    Article  CAS  PubMed  Google Scholar 

  86. Casabianca, L. B. Solid-state nuclear magnetic resonance studies of nanoparticles. Solid State Nucl. Magn. Reson. 107, 101664 (2020).

    Article  CAS  PubMed  Google Scholar 

  87. Anderson, W. A. & Arnold, J. T. A line-narrowing experiment. Phys. Rev. 94, 497–498 (1954).

    Article  CAS  Google Scholar 

  88. Pines, A., Gibby, M. G. & Waugh, J. S. Proton-enhanced NMR of dilute spins in solids. J. Chem. Phys. 59, 569–590 (1973).

    Article  CAS  Google Scholar 

  89. Aue, W. P., Bartholdi, E. & Ernst, R. R. Two-dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229–2246 (1976).

    Article  CAS  Google Scholar 

  90. Lesage, A., Bardet, M. & Emsley, L. Through-bond carbon–carbon connectivities in disordered solids by NMR. J. Am. Chem. Soc. 121, 10987–10993 (1999).

    Article  CAS  Google Scholar 

  91. Gullion, T. & Schaefer, J. Rotational-echo double-resonance NMR. J. Magn. Reson. 81, 196–200 (1989).

    CAS  Google Scholar 

  92. Rossini, A. J. et al. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46, 1942–1951 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Thankamony, A. S. L., Wittmann, J. J., Kaushik, M. & Corzilius, B. Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 102–103, 120–195 (2017).

    Article  CAS  Google Scholar 

  94. Lesage, A. et al. Surface enhanced NMR spectroscopy by dynamic nuclear polarization. J. Am. Chem. Soc. 132, 15459–15461 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Rossini, A. J. et al. Dynamic nuclear polarization NMR spectroscopy of microcrystalline solids. J. Am. Chem. Soc. 134, 16899–16908 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Björgvinsdóttir, S., Walder, B. J., Pinon, A. C. & Emsley, L. Bulk nuclear hyperpolarization of inorganic solids by relay from the surface. J. Am. Chem. Soc. 140, 7946–7951 (2018).

    Article  PubMed  CAS  Google Scholar 

  97. Harris, R. K., Wasylishen, R. E. & Duer, M. J. NMR Crystallography (Wiley, 2012).

  98. Berruyer, P. et al. Three-dimensional structure determination of surface sites. J. Am. Chem. Soc. 139, 849–855 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Grant, J. T. et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 354, 1570–1573 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Dorn, R. W. et al. Structure determination of boron-based oxidative dehydrogenation heterogeneous catalysts with ultrahigh field 35.2 T 11B solid-state NMR spectroscopy. ACS Catal. 10, 13852–13866 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dorn, R. W. et al. Identifying the molecular edge termination of exfoliated hexagonal boron nitride nanosheets with solid-state NMR spectroscopy and plane-wave DFT calculations. Chem. Mater. 32, 3109–3121 (2020).

    Article  CAS  Google Scholar 

  102. Forse, A. C. et al. Elucidating CO2 chemisorption in diamine-appended metal–organic frameworks. J. Am. Chem. Soc. 140, 18016–18031 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Facelli, J. C. & Grant, D. M. Determination of molecular symmetry in crystalline naphthalene using solid-state NMR. Nature 365, 325–327 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Sebastiani, D. & Parrinello, M. A new ab-initio approach for NMR chemical shifts in periodic systems. J. Phys. Chem. A 105, 1951–1958 (2001).

    Article  CAS  Google Scholar 

  105. Ashbrook, S. E. & McKay, D. Combining solid-state NMR spectroscopy with first-principles calculations — a guide to NMR crystallography. Chem. Commun. 52, 7186–7204 (2016). A comprehensive introduction to determining the atomic-level structure of solids using NMR crystallography.

    Article  CAS  Google Scholar 

  106. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  107. Pickard, C. J. & Mauri, F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B 63, 245101 (2001).

    Article  CAS  Google Scholar 

  108. Yates, J. R., Pickard, C. J. & Mauri, F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B 76, 024401 (2007).

    Article  CAS  Google Scholar 

  109. Dračínský, M. & Hodgkinson, P. A molecular dynamics study of the effects of fast molecular motions on solid-state NMR parameters. CrystEngComm 15, 8705–8712 (2013).

    Article  CAS  Google Scholar 

  110. Cuny, J., Xie, Y., Pickard, C. J. & Hassanali, A. A. Ab initio quality NMR parameters in solid-state materials using a high-dimensional neural-network representation. J. Chem. Theory Comput. 12, 765–773 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Paruzzo, F. M. et al. Chemical shifts in molecular solids by machine learning. Nat. Commun. 9, 4501 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Xu, Z. & Stebbins, J. F. Cation dynamics and diffusion in lithium orthosilicate: two-dimensional lithium-6 NMR. Science 270, 1332–1334 (1995).

    Article  CAS  Google Scholar 

  113. Verhoeven, V. W. J. et al. Lithium dynamics in LiMn2O4 probed directly by two-dimensional 7Li NMR. Phys. Rev. Lett. 86, 4314–4317 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Moudrakovski, I. L., Ratcliffe, C. I. & Ripmeester, J. A. Application of 129Xe 2D-EXSY NMR to intra- and interparticle exchange in zeolites. Appl. Magn. Reson. 8, 385–399 (1995).

    Article  CAS  Google Scholar 

  115. Schmidt-Rohr, K. et al. Molecular nature of the β relaxation in poly(methyl methacrylate) investigated by multidimensional NMR. Macromolecules 27, 4733–4745 (1994).

    Article  CAS  Google Scholar 

  116. Wasylishen, R. E., Ashbrook, S. & Wimperis, S. NMR of Quadrupolar Nuclei in Solid Materials (Wiley, 2012).

  117. Bureekaew, S. et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 8, 831–836 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Shustova, N. B. et al. Phenyl ring dynamics in a tetraphenylethylene-bridged metal–organic framework: implications for the mechanism of aggregation-induced emission. J. Am. Chem. Soc. 134, 15061–15070 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Böhmer, R., Diezemann, G., Hinze, G. & Rössler, E. Dynamics of supercooled liquids and glassy solids. Prog. Nucl. Magn. Reson. Spectrosc. 39, 191–267 (2001).

    Article  Google Scholar 

  121. Eckert, H. Structural characterization of noncrystalline solids and glasses using solid state NMR. Prog. Nucl. Magn. Reson. Spectrosc. 24, 159–293 (1992).

    Article  CAS  Google Scholar 

  122. Vinod Chandran, C. & Heitjans, P. Chapter one - Solid-state NMR studies of lithium ion dynamics across materials classes. Annu. Rep. NMR Spectrosc. 89, 1–102 (2016).

    Article  CAS  Google Scholar 

  123. McClelland, I. et al. Muon spectroscopy for investigating diffusion in energy storage materials. Annu. Rev. Mater. Res. 50, 371–393 (2020).

    Article  CAS  Google Scholar 

  124. Heitjans, P., Schirmer, A. & Indris, S. in Diffusion in Condensed Matter: Methods, Materials, Models (eds Heitjans, P. & Kärger, J.) 367–415 (Springer, 2005).

  125. Zuo, L. et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 3, e1700106 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Zhao, Y. et al. A polymer scaffold for self-healing perovskite solar cells. Nat. Commun. 7, 10228 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    Article  CAS  Google Scholar 

  128. Han, T.-H. et al. Perovskite–polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Commun. 10, 520 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yadav, S. K. et al. Metal halide perovskite@metal–organic framework hybrids: synthesis, design, properties, and applications. Small 16, 2004891 (2020).

    Article  CAS  Google Scholar 

  130. Sun, J.-Y. et al. Facile two-step synthesis of all-inorganic perovskite CsPbX3 (X=Cl, Br, and I) zeolite-Y composite phosphors for potential backlight display application. Adv. Funct. Mater. 27, 1704371 (2017).

    Article  CAS  Google Scholar 

  131. Ye, Y. et al. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Adv. Opt. Mater. 7, 1801663 (2019).

    Article  CAS  Google Scholar 

  132. Bi, C., Zheng, X., Chen, B., Wei, H. & Huang, J. Spontaneous passivation of hybrid perovskite by sodium ions from glass substrates: mysterious enhancement of device efficiency revealed. ACS Energy Lett. 2, 1400–1406 (2017).

    Article  CAS  Google Scholar 

  133. Ahmad, S., George, C., Beesley, D. J., Baumberg, J. J. & De Volder, M. Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 18, 1856–1862 (2018).

    Article  CAS  PubMed  Google Scholar 

  134. Kubicki, D. J., Prochowicz, D., Hofstetter, A., Walder, B. J. & Emsley, L. 113Cd solid-state NMR at 21.1 T reveals the local structure and passivation mechanism of cadmium in hybrid and all-inorganic halide perovskites. ACS Energy Lett. 5, 2964–2971 (2020).

    Article  CAS  Google Scholar 

  135. Ruiz-Preciado, M. A. et al. Supramolecular modulation of hybrid perovskite solar cells via bifunctional halogen bonding revealed by two-dimensional 19F solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 1645–1654 (2020).

    Article  CAS  PubMed  Google Scholar 

  136. Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 370, eabb8985 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Senocrate, A., Moudrakovski, I. & Maier, J. Short-range ion dynamics in methylammonium lead iodide by multinuclear solid state NMR and 127I NQR. Phys. Chem. Chem. Phys. 20, 20043–20055 (2018).

    Article  CAS  PubMed  Google Scholar 

  138. Noel, N. K. et al. Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics. Energy Environ. Sci. 12, 3063–3073 (2019).

    Article  CAS  Google Scholar 

  139. Nagane, S. et al. Tetrafluoroborate-induced reduction in defect density in hybrid perovskites through halide management. Adv. Mater. https://doi.org/10.1002/adma.202102462 (2021).

    Article  PubMed  Google Scholar 

  140. Volkov, A. F., Venevtsev, Y. N. & Semin, G. K. Nuclear quadrupole resonance (NQR) of 79Br and 81Br in perovskite and orthorhombic forms of CsPbBr3 and CsPbJ3. Phys. Status Solidi B 35, K167–K169 (1969).

    Article  CAS  Google Scholar 

  141. Sharma, S., Weiden, N. & Weiss, A. Phase transitions in CsSnCl3 and CsPbBr3. An NMR and NQR study. Z. Naturforsch. A Phys. Sci. 46, 329–336 (1991).

    Article  CAS  Google Scholar 

  142. Xu, Q., Eguchi, T., Nakayama, H., Nakamura, N. & Kishita, M. Molecular motions and phase transitions in solid CH3NH3PbX3 (X = C1, Br, I) as studied by NMR and NQR. Z. Naturforsch. A Phys. Sci. 46, 240–246 (1991).

    Article  CAS  Google Scholar 

  143. Piveteau, L. et al. Bulk and nanocrystalline cesium lead-halide perovskites as seen by halide magnetic resonance. ACS Cent. Sci. 6, 1138–1149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Johnson, R. L. & Schmidt-Rohr, K. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J. Magn. Reson. 239, 44–49 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Vinogradov, E., Madhu, P. K. & Vega, S. High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment. Chem. Phys. Lett. 314, 443–450 (1999).

    Article  CAS  Google Scholar 

  146. Sakellariou, D., Lesage, A., Hodgkinson, P. & Emsley, L. Homonuclear dipolar decoupling in solid-state NMR using continuous phase modulation. Chem. Phys. Lett. 319, 253–260 (2000).

    Article  CAS  Google Scholar 

  147. Elena, B., de Paëpe, G. & Emsley, L. Direct spectral optimisation of proton–proton homonuclear dipolar decoupling in solid-state NMR. Chem. Phys. Lett. 398, 532–538 (2004).

    Article  CAS  Google Scholar 

  148. Paruzzo, F. M. & Emsley, L. High-resolution 1H NMR of powdered solids by homonuclear dipolar decoupling. J. Magn. Reson. 309, 106598 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Nishiyama, Y. Fast magic-angle sample spinning solid-state NMR at 60–100 kHz for natural abundance samples. Solid State Nucl. Magn. Reson. 78, 24–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Moutzouri, P., Paruzzo, F. M., de Almeida, B. S., Stevanato, G. & Emsley, L. Homonuclear decoupling in 1H NMR of solids by remote correlation. Angew. Chem. Int. Ed. 59, 6235–6238 (2020).

    Article  CAS  Google Scholar 

  151. Van Gompel, W. T. M. et al. Degradation of the formamidinium cation and the quantification of the formamidinium–methylammonium ratio in lead iodide hybrid perovskites by nuclear magnetic resonance spectroscopy. J. Phys. Chem. C 122, 4117–4124 (2018).

    Article  CAS  Google Scholar 

  152. Ferrara, C. et al. Wide band-gap tuning in Sn-based hybrid perovskites through cation replacement: the FA1−xMAxSnBr3 mixed system. J. Mater. Chem. A 5, 9391–9395 (2017).

    Article  CAS  Google Scholar 

  153. Kazemi, M. A. A. et al. Molecular-level insight into correlation between surface defects and stability of methylammonium lead halide perovskite under controlled humidity. Small Methods 5, 2000834 (2021).

    Article  CAS  Google Scholar 

  154. Xiao, M. et al. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014).

    Article  CAS  Google Scholar 

  155. Elena, B. & Emsley, L. Powder crystallography by proton solid-state NMR spectroscopy. J. Am. Chem. Soc. 127, 9140–9146 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-State NMR and Polymers 1st edn (Elsevier, 2012).

  157. Krishna, A. et al. Defect passivation via the incorporation of tetrapropylammonium cation leading to stability enhancement in lead halide perovskite. Adv. Funct. Mater. 30, 1909737 (2020).

    Article  CAS  Google Scholar 

  158. Emsley, L. in eMagRes (eds Harris, R. K. & Wasylishen, R. L.) (Wiley, 2009).

  159. Pickard, C. J., Salager, E., Pintacuda, G., Elena, B. & Emsley, L. Resolving structures from powders by NMR crystallography using combined proton spin diffusion and plane wave DFT calculations. J. Am. Chem. Soc. 129, 8932–8933 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Pines, A., Gibby, M. G. & Waugh, J. S. Proton-enhanced nuclear induction spectroscopy. A method for high resolution NMR of dilute spins in solids. J. Chem. Phys. 56, 1776–1777 (1972).

    Article  CAS  Google Scholar 

  161. Tavakoli, M. M. et al. Addition of adamantylammonium iodide to hole transport layers enables highly efficient and electroluminescent perovskite solar cells. Energy Environ. Sci. 11, 3310–3320 (2018).

    Article  CAS  Google Scholar 

  162. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, Z. et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 28, 284–292 (2016).

    Article  CAS  Google Scholar 

  164. Prochowicz, D. et al. One-step mechanochemical incorporation of an insoluble cesium additive for high performance planar heterojunction solar cells. Nano Energy 49, 523–528 (2018).

    Article  CAS  Google Scholar 

  165. Ray, A. et al. Green-emitting powders of zero-dimensional Cs4PbBr6: delineating the intricacies of the synthesis and the origin of photoluminescence. Chem. Mater. 31, 7761–7769 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Riesen, N., Lockrey, M., Badek, K. & Riesen, H. On the origins of the green luminescence in the “zero-dimensional perovskite” Cs4PbBr6: conclusive results from cathodoluminescence imaging. Nanoscale 11, 3925–3932 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Yin, J. et al. Intrinsic lead ion emissions in zero-dimensional Cs4PbBr6 nanocrystals. ACS Energy Lett. 2, 2805–2811 (2017).

    Article  CAS  Google Scholar 

  168. Chen, Y. et al. Surface termination of CsPbBr3 perovskite quantum dots determined by solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 6117–6127 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Shamsi, J. et al. Stable hexylphosphonate-capped blue-emitting quantum-confined CsPbBr3 nanoplatelets. ACS Energy Lett. 5, 1900–1907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Piveteau, L. et al. Resolving the core and the surface of CdSe quantum dots and nanoplatelets using dynamic nuclear polarization enhanced PASS-PIETA NMR spectroscopy. ACS Cent. Sci. 4, 1113–1125 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Saliba, M. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  PubMed  Google Scholar 

  173. Abdi-Jalebi, M. et al. Dedoping of lead halide perovskites incorporating monovalent cations. ACS Nano 12, 7301–7311 (2018).

    Article  CAS  PubMed  Google Scholar 

  174. Fang, Z., He, H., Gan, L., Li, J. & Ye, Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv. Sci. 5, 1800736 (2018).

    Article  CAS  Google Scholar 

  175. Pazoki, M., Jacobsson, T. J., Hagfeldt, A., Boschloo, G. & Edvinsson, T. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: replacement of lead with alkaline-earth metals. Phys. Rev. B 93, 144105 (2016).

    Article  CAS  Google Scholar 

  176. Bahadur, J. et al. Enhanced moisture stability of MAPbI3 perovskite solar cells through barium doping. Sol. Energy 190, 396–404 (2019).

    Article  CAS  Google Scholar 

  177. Pérez-del-Rey, D. et al. Strontium insertion in methylammonium lead iodide: long charge carrier lifetime and high fill-factor solar cells. Adv. Mater. 28, 9839–9845 (2016).

    Article  PubMed  CAS  Google Scholar 

  178. Caprioglio, P. et al. High open circuit voltages in pin-type perovskite solar cells through strontium addition. Sustain. Energy Fuels 3, 550–563 (2019).

    Article  CAS  Google Scholar 

  179. Jacobsson, T. J., Pazoki, M., Hagfeldt, A. & Edvinsson, T. Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3. J. Phys. Chem. C 119, 25673–25683 (2015).

    Article  CAS  Google Scholar 

  180. Phung, N. et al. The doping mechanism of halide perovskite unveiled by alkaline earth metals. J. Am. Chem. Soc. 142, 2364–2374 (2020).

    Article  CAS  PubMed  Google Scholar 

  181. Lu, C. et al. Calcium doped MAPbI3 with better energy state alignment in perovskite solar cells. Appl. Phys. Lett. 112, 193901 (2018).

    Article  CAS  Google Scholar 

  182. Yang, F. et al. Magnesium-doped MAPbI3 perovskite layers for enhanced photovoltaic performance in humid air atmosphere. ACS Appl. Mater. Interfaces 10, 24543–24548 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Huang, Q. et al. Suppressing defect states in CsPbBr3 perovskite via magnesium substitution for efficient all-inorganic light-emitting diodes. Nanoscale Horiz. 4, 924–932 (2019).

    Article  CAS  Google Scholar 

  184. Park, B. et al. Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance. J. Mater. Chem. A 3, 21760–21771 (2015).

    Article  CAS  Google Scholar 

  185. Hu, Y., Aygueler, M. F., Petrus, M. L., Bein, T. & Docampo, P. Impact of rubidium and cesium cations on the moisture stability of multiple-cation mixed-halide perovskites. ACS Energy Lett. 2, 2212–2218 (2017).

    Article  CAS  Google Scholar 

  186. Kanwat, A. et al. Stabilizing the electroluminescence of halide perovskites with potassium passivation. ACS Energy Lett. 5, 1804–1813 (2020).

    Article  CAS  Google Scholar 

  187. Sharenko, A., Mackeen, C., Jewell, L., Bridges, F. & Toney, M. F. Evolution of iodoplumbate complexes in methylammonium lead iodide perovskite precursor solutions. Chem. Mater. 29, 1315–1320 (2017).

    Article  CAS  Google Scholar 

  188. Radicchi, E., Mosconi, E., Elisei, F., Nunzi, F. & De Angelis, F. Understanding the solution chemistry of lead halide perovskites precursors. ACS Appl. Energy Mater. 2, 3400–3409 (2019).

    Article  CAS  Google Scholar 

  189. Navas, J. et al. Revealing the role of Pb2+ in the stability of organic–inorganic hybrid perovskite CH3NH3Pb1−xCdxI3: an experimental and theoretical study. Phys. Chem. Chem. Phys. 17, 23886–23896 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Dunlap-Shohl, W. A., Younts, R., Gautam, B., Gundogdu, K. & Mitzi, D. B. Effects of Cd diffusion and doping in high-performance perovskite solar cells using CdS as electron transport layer. J. Phys. Chem. C 120, 16437–16445 (2016).

    Article  CAS  Google Scholar 

  191. van der Stam, W. et al. Highly emissive divalent-ion-doped colloidal CsPb1−xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Saidaminov, M. I. et al. Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648–654 (2018).

    Article  CAS  Google Scholar 

  193. Parobek, D. et al. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals. Nano Lett. 16, 7376–7380 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Zou, S. et al. Stabilizing cesium lead halide perovskite lattice through Mn(ii) substitution for air-stable light-emitting diodes. J. Am. Chem. Soc. 139, 11443–11450 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Xu, K., Lin, C. C., Xie, X. & Meijerink, A. Efficient and stable luminescence from Mn2+ in core and core–isocrystalline shell CsPbCl3 perovskite nanocrystals. Chem. Mater. 29, 4265–4272 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mir, W. J., Jagadeeswararao, M., Das, S. & Nag, A. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets. ACS Energy Lett. 2, 537–543 (2017).

    Article  CAS  Google Scholar 

  197. Yao, J.-S. et al. Ce3+-doping to modulate photoluminescence kinetics for efficient CsPbBr3 nanocrystals based light-emitting diodes. J. Am. Chem. Soc. 140, 3626–3634 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Pell, A. J., Pintacuda, G. & Grey, C. P. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc. 111, 1–271 (2018).

    Article  PubMed  CAS  Google Scholar 

  199. Klug, M. T. et al. Tailoring metal halide perovskites through metal substitution: influence on photovoltaic and material properties. Energy Environ. Sci. 10, 236–246 (2017).

    Article  CAS  Google Scholar 

  200. Shmyreva, A. A., Safdari, M., Furó, I. & Dvinskikh, S. V. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning. J. Chem. Phys. 144, 224201 (2016).

    Article  PubMed  CAS  Google Scholar 

  201. Bernard, G. M. et al. Methylammonium lead chloride: a sensitive sample for an accurate NMR thermometer. J. Magn. Reson. 283, 14–21 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. Aebli, M. et al. Lead-halide scalar couplings in 207Pb NMR of APbX3 perovskites (A=Cs, methylammonium, formamidinium; X=Cl, Br, I). Sci. Rep. 10, 8229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Su, T.-S. et al. Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells. J. Am. Chem. Soc. 142, 19980–19991 (2020).

    Article  CAS  PubMed  Google Scholar 

  204. Kubicki, D. J. et al. Amplifying dynamic nuclear polarization of frozen solutions by incorporating dielectric particles. J. Am. Chem. Soc. 136, 15711–15718 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Walder, B. J. et al. One- and two-dimensional high-resolution NMR from flat surfaces. ACS Cent. Sci. 5, 515–523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Fabini, D. H. et al. Dynamic stereochemical activity of the Sn2+ lone pair in perovskite CsSnBr3. J. Am. Chem. Soc. 138, 11820–11832 (2016). The first report of dynamic cation off-centring in metal halide perovskites.

    Article  CAS  PubMed  Google Scholar 

  207. Fabini, D. H., Seshadri, R. & Kanatzidis, M. G. The underappreciated lone pair in halide perovskites underpins their unusual properties. MRS Bull. 45, 467–477 (2020). A comprehensive perspective on the importance of B-site cation lone pairs and their impact on material properties.

    Article  CAS  Google Scholar 

  208. Laurita, G., Fabini, H. D., Stoumpos, C. C., Kanatzidis, M. G. & Seshadri, R. Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites. Chem. Sci. 8, 5628–5635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Yamada, K., Fujise, K., Hino, S., Yamane, Y. & Nakagama, T. Characterization of Sn(ii)-based perovskites by XRD, DTA, NQR and 119Sn NMR for photovoltaic applications. Chem. Lett. 48, 749–752 (2019).

    Article  CAS  Google Scholar 

  210. Ha, M. et al. Phase evolution in methylammonium tin halide perovskites with variable temperature solid-state 119Sn NMR spectroscopy. J. Phys. Chem. C 124, 15015–15027 (2020).

    Article  CAS  Google Scholar 

  211. Chung, I. et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012).

    Article  CAS  PubMed  Google Scholar 

  212. Karmakar, A., Bhattacharya, A., Bernard, G. M., Mar, A. & Michaelis, V. K. Revealing the local Sn and Pb arrangements in CsSnxPb1−xBr3 perovskites with solid-state NMR spectroscopy. ACS Mater. Lett. 3, 261–267 (2021).

    Article  CAS  Google Scholar 

  213. Kubicki, D. J. et al. Halide mixing and phase segregation in Cs2AgBiX6 (X=Cl, Br, and I) double perovskites from cesium-133 solid-state NMR and optical spectroscopy. Chem. Mater. 32, 8129–8138 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. O’Dell, L. A. & Schurko, R. W. Static solid-state 14N NMR and computational studies of nitrogen EFG tensors in some crystalline amino acids. Phys. Chem. Chem. Phys. 11, 7069–7077 (2009).

    Article  PubMed  CAS  Google Scholar 

  215. O’Dell, L. A., Schurko, R. W., Harris, K. J., Autschbach, J. & Ratcliffe, C. I. Interaction tensors and local dynamics in common structural motifs of nitrogen: a solid-state 14N NMR and DFT study. J. Am. Chem. Soc. 133, 527–546 (2011).

    Article  PubMed  CAS  Google Scholar 

  216. Schurko, R. W. Ultra-wideline solid-state NMR spectroscopy. Acc. Chem. Res. 46, 1985–1995 (2013).

    Article  CAS  PubMed  Google Scholar 

  217. Wasylishen, R. E., Pettitt, B. A. & Jeffrey, K. R. NMR investigation of orientationally disordered NaCN and KCN. J. Chem. Phys. 74, 6022–6026 (1981).

    Article  CAS  Google Scholar 

  218. O’Reilly, D. E., Peterson, E. M., Scheie, C. E. & Kadaba, P. K. Nitrogen-14 and sodium-23 nuclear magnetic resonance of sodium and potassium cyanide. J. Chem. Phys. 58, 3018–3022 (1973).

    Article  Google Scholar 

  219. Fabini, D. H. et al. Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide. Angew. Chem. Int. Ed. 55, 15392–15396 (2016).

    Article  CAS  Google Scholar 

  220. Ghosh, D., Walsh Atkins, P., Islam, M. S., Walker, A. B. & Eames, C. Good vibrations: locking of octahedral tilting in mixed-cation iodide perovskites for solar cells. ACS Energy Lett. 2, 2424–2429 (2017).

    Article  CAS  Google Scholar 

  221. Spiess, H. W. Molecular dynamics of solid polymers as revealed by deuteron NMR. Colloid Polym. Sci. 261, 193–209 (1983).

    Article  CAS  Google Scholar 

  222. Brown, S. P. & Spiess, H. W. Advanced solid-state NMR methods for the elucidation of structure and dynamics of molecular, macromolecular, and supramolecular systems. Chem. Rev. 101, 4125–4156 (2001).

    Article  CAS  PubMed  Google Scholar 

  223. Qiao, W.-C. et al. Metastable alloying structures in MAPbI3−xClx crystals. NPG Asia Mater. 12, 68 (2020).

    Article  CAS  Google Scholar 

  224. Fabini, D. H. et al. Main-group halide semiconductors derived from perovskite: distinguishing chemical, structural, and electronic aspects. Inorg. Chem. 56, 11–25 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory range validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  226. Torchia, D. A. & Szabo, A. Spin-lattice relaxation in solids. J. Magn. Reson. 49, 107–21 (1982).

    CAS  Google Scholar 

  227. Mozur, E. M. et al. Cesium substitution disrupts concerted cation dynamics in formamidinium hybrid perovskites. Chem. Mater. 32, 6266–6277 (2020).

    Article  CAS  Google Scholar 

  228. Nayak, P. K. et al. Impact of Bi3+ heterovalent doping in organic–inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140, 574–577 (2018).

    Article  CAS  PubMed  Google Scholar 

  229. García-Rodríguez, R., Ferdani, D., Pering, S., Baker, P. J. & Cameron, P. J. Influence of bromide content on iodide migration in inverted MAPb(I1−xBrx)3 perovskite solar cells. J. Mater. Chem. A 7, 22604–22614 (2019).

    Article  Google Scholar 

  230. Ferdani, D. W. et al. Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy Environ. Sci. 12, 2264–2272 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 841136. This work was supported by Swiss National Science Foundation grant no. 200020_178860. S.D.S. acknowledges the Royal Society and Tata Group (UF150033). C.P.G. acknowledges the Royal Society.

Author information

Authors and Affiliations

Authors

Contributions

D.J.K. wrote the article, with contributions from S.D.S., C.P.G. and L.E.

Corresponding authors

Correspondence to Samuel D. Stranks, Clare P. Grey or Lyndon Emsley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Magic-angle spinning

(MAS). An experimental protocol in which the solid sample is spun at high rates (typically 10–100 kHz) around an angle of 54.7356° relative to the external magnetic field, leading to substantially improved spectral resolution.

Cross-polarization

(CP). An experimental protocol allowing the detection of various nuclei with substantially improved sensitivity by transferring to them the intrinsically higher polarization of nearby 1H.

Dynamic nuclear polarization

(DNP). A sensitivity-enhancement NMR protocol that allows signal enhancements of up to ~660×, particularly from surfaces, which translate to up to 440,000× faster signal acquisition.

Spin diffusion

(SD). The process of continuous energy exchange between abundant spins of the same isotope (for example, 1H, 19F) driven by dipolar couplings and, therefore, makes it possible to detect spatial proximities between different species in the NMR spectrum.

Quadrupolar effects

The asymmetrical distribution of negative charge around quadrupolar nuclei (I > 1/2) leads to complex lineshapes that depend on the extent of asymmetry. These effects are a powerful tool to study local electronic environments.

Transverse relaxation

Also referred to as T2 relaxation, this is the process after pulse excitation by which the initially coherent system of nuclear spins loses its phase coherence, leading to finite linewidths in the NMR spectrum. Large values of relaxation time T2 indicate slower transverse relaxation and result in narrower linewidths. Structural dynamics and paramagnetic dopant concentrations are important contributors to the value of T2.

Longitudinal relaxation

This T1 relaxation process sees a nucleus return to thermal equilibrium after being perturbed. The value of the relaxation time T1 limits how frequently an NMR pulse sequence can be repeated to improve the overall signal-to-noise ratio. Structural dynamics and paramagnetic dopant concentrations are important contributors to the value of T1.

Nuclear quadrupole resonance

(NQR). A spectroscopic technique in which the magnetic resonance signal from quadrupolar nuclei is detected in the absence of an external magnetic field. It yields information complementary to NMR and, in the case of halogens, is often more practical.

Paramagnetic relaxation enhancement

(PRE). The unpaired electron(s) of a paramagnetic species, such as a transition metal ion, can couple strongly to NMR-active nuclei and cause rapid T1 and T2 relaxation. This effect is distance dependent and provides a means of studying paramagnetic dopant incorporation into materials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubicki, D.J., Stranks, S.D., Grey, C.P. et al. NMR spectroscopy probes microstructure, dynamics and doping of metal halide perovskites. Nat Rev Chem 5, 624–645 (2021). https://doi.org/10.1038/s41570-021-00309-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00309-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing