Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing

Abstract

The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy supply and use by neurons and other brain cells.
Fig. 2: Causes and consequences of the brain energy gap in neurodegenerative disorders.
Fig. 3: Brain energy disruption and rescue strategies.

Similar content being viewed by others

References

  1. Aldana, B. I. Microglia-specific metabolic changes in neurodegeneration. J. Mol. Biol. 431, 1830–1842 (2019).

    CAS  PubMed  Google Scholar 

  2. Boland, B. et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat. Rev. Drug. Discov. 17, 660–688 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Cunnane, S. C. et al. Can ketones help rescue brain fuel supply in later life? Implications for cognitive health during aging and the treatment of Alzheimer’s disease. Front. Mol. Neurosci. https://doi.org/10.3389/fnmol.2016.00053 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zilberter, Y. & Zilberter, M. The vicious circle of hypometabolism in neurodegenerative diseases: ways and mechanisms of metabolic correction. J. Neurosci. Res. 95, 2217–2235 (2017).

    CAS  PubMed  Google Scholar 

  5. Camandola, S. & Mattson, M. P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 36, 1474–1492 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wilson, H., Pagano, G. & Politis, M. Dementia spectrum disorders: lessons learnt from decades with pet research. J. Neural Transm. 126, 233–251 (2019).

    PubMed  Google Scholar 

  7. Johnson, E. C. B. et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. https://doi.org/10.1038/s41591-020-0815-6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Magistretti, P. J. & Allaman, I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19, 235–249 (2018).

    CAS  PubMed  Google Scholar 

  9. Wang, A., Luan, H. H. & Medzhitov, R. An evolutionary perspective on immunometabolism. Science 363, eaar3932 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tups, A., Benzler, J., Sergi, D., Ladyman, S. R. & Williams, L. M. Central regulation of glucose homeostasis. Compr. Physiol. 7, 741–764 (2017).

    PubMed  Google Scholar 

  11. Caron, A. & Richard, D. Neuronal systems and circuits involved in the control of food intake and adaptive thermogenesis. Ann. N. Y. Acad. Sci. 1391, 35–53 (2016).

    PubMed  Google Scholar 

  12. Dodd, G. T. et al. Insulin regulates POMC neuronal plasticity to control glucose metabolism. Elife https://doi.org/10.7554/eLife.38704 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Oyarzabal, A. & Marin-Valencia, I. Synaptic energy metabolism and neuronal excitability, in sickness and health. J. Inherit. Metab. Dis. 42, 220–236 (2019).

    PubMed  Google Scholar 

  14. Bordone, M. P. et al. The energetic brain - a review from students to students. J. Neurochem. 151, 139–165 (2019).

    CAS  PubMed  Google Scholar 

  15. Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–1045 (2019).

    CAS  PubMed  Google Scholar 

  16. Engl, E. & Attwell, D. Non-signalling energy use in the brain. J. Physiol. 593, 3417–3429 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ashrafi, G., Wu, Z., Farrell, R. J. & Ryan, T. A. GLUT4 mobilization supports energetic demands of active synapses. Neuron 93, 606–615.e603 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gundersen, V., Storm-Mathisen, J. & Bergersen, L. H. Neuroglial transmission. Physiol. Rev. 95, 695–726 (2015).

    CAS  PubMed  Google Scholar 

  19. Cheng, J. et al. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol. 136, 507–523 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lecrux, C., Bourourou, M. & Hamel, E. How reliable is cerebral blood flow to map changes in neuronal activity? Autonomic Neurosci. 217, 71–79 (2019).

    Google Scholar 

  21. Saab, Aiman S. et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91, 119–132 (2016).

    CAS  PubMed  Google Scholar 

  22. Pearson-Leary, J., Jahagirdar, V., Sage, J. & McNay, E. C. Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4. Behav. Brain Res. 338, 32–39 (2018).

    CAS  PubMed  Google Scholar 

  23. Barros, L. F., Brown, A. & Swanson, R. A. Glia in brain energy metabolism: a perspective. Glia 66, 1134–1137 (2018).

    PubMed  Google Scholar 

  24. Waitt, A. E., Reed, L., Ransom, B. R. & Brown, A. M. Emerging roles for glycogen in the CNS. Front. Mol. Neurosci. https://doi.org/10.3389/fnmol.2017.00073 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nave, K.-A. & Werner, H. B. Myelination of the nervous system: mechanisms and functions. Annu. Rev. Cell Dev. Biol. 30, 503–533 (2014).

    CAS  PubMed  Google Scholar 

  26. Tomassy, G. S. et al. Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344, 319–324 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Amaral, A. I., Hadera, M. G., Kotter, M. & Sonnewald, U. Oligodendrocytes do not export NAA-derived aspartate in vitro. Neurochem. Res. 42, 827–837 (2017).

    Google Scholar 

  28. Trevisiol, A. et al. Monitoring ATP dynamics in electrically active white matter tracts. eLife https://doi.org/10.7554/elife.24241 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hinckelmann, M.-V. et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nat. Commun. https://doi.org/10.1038/ncomms13233 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Deczkowska, A. et al. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell 173, 1073–1081 (2018).

    CAS  PubMed  Google Scholar 

  31. Frere, S. & Slutsky, I. Alzheimer’s disease: from firing instability to homeostasis network collapse. Neuron 97, 32–58 (2018).

    CAS  PubMed  Google Scholar 

  32. Jessen, S. B., Mathiesen, C., Lind, B. L. & Lauritzen, M. Interneuron deficit associates attenuated network synchronization to mismatch of energy supply and demand in aging mouse brains. Cereb. Cortex 27, 646–659 (2017).

    PubMed  Google Scholar 

  33. Micheva, K. D. et al. Distinctive structural and molecular features of myelinated inhibitory axons in human neocortex. eNeuro https://doi.org/10.1523/eneuro.0297-18.2018 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kann, O. The interneuron energy hypothesis: implications for brain disease. Neurobiol. Dis. 90, 75–85 (2016).

    CAS  PubMed  Google Scholar 

  35. Illarioshkin, S. N., Klyushnikov, S. A., Vigont, V. A., Seliverstov, Y. A. & Kaznacheyeva, E. V. Molecular pathogenesis in Huntington’s disease. Biochemistry 83, 1030–1039 (2018).

    CAS  PubMed  Google Scholar 

  36. Griffith, C. M., Eid, T., Rose, G. M. & Patrylo, P. R. Evidence for altered insulin receptor signaling in Alzheimer’s disease. Neuropharmacology 136, 202–215 (2018).

    CAS  PubMed  Google Scholar 

  37. Duarte, A. I., Santos, M. S., Oliveira, C. R. & Moreira, P. I. Brain insulin signalling, glucose metabolism and females’ reproductive aging: a dangerous triad in Alzheimer’s disease. Neuropharmacology 136, 223–242 (2018).

    CAS  PubMed  Google Scholar 

  38. Craft, S. et al. Effects of regular and long-acting insulin on cognition and Alzheimer’s disease biomarkers: a pilot clinical trial. J. Alzheimers Dis. 57, 1325–1334 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bak, L. K., Walls, A. B., Schousboe, A. & Waagepetersen, H. S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem. 293, 7108–7116 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cunnane, S. C. & Crawford, M. A. Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J. Hum. Evol. 77, 88–98 (2014).

    PubMed  Google Scholar 

  41. Courchesne-Loyer, A. et al. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: a dual tracer quantitative positron emission tomography study. J. Cereb. Blood Flow. Metab. 37, 2485–2493 (2016).

    PubMed  PubMed Central  Google Scholar 

  42. Cani, P. D. Is colonic propionate delivery a novel solution to improve metabolism and inflammation in overweight or obese subjects? Gut 68, 1352–1353 (2019).

    PubMed  PubMed Central  Google Scholar 

  43. Spielman, L. J., Gibson, D. L. & Klegeris, A. Unhealthy gut, unhealthy brain: the role of the intestinal microbiota in neurodegenerative diseases. Neurochem. Int. 120, 149–163 (2018).

    CAS  PubMed  Google Scholar 

  44. de Vadder, F. & Mithieux, G. Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. J. Endocrinol. 236, R105–R108 (2018).

    PubMed  Google Scholar 

  45. Olson, C. A. et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 174, 497 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Soty, M., Gautier-Stein, A., Rajas, F. & Mithieux, G. Gut-brain glucose signaling in energy homeostasis. Cell Metab. 25, 1231–1242 (2017).

    CAS  PubMed  Google Scholar 

  47. Zott, B., Busche, M. A., Sperling, R. A. & Konnerth, A. What happens with the circuit in Alzheimer’s disease in mice and humans? Annu. Rev. Neurosci. 41, 277–297 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu, L., Shen, Z., Wang, C. & Yu, Y. Efficient coding and energy efficiency are promoted by balanced excitatory and inhibitory synaptic currents in neuronal network. Front. Cell Neurosci. 12, 123 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Ta, T.-T. et al. Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc. Natl Acad. Sci. USA 116, 4637–4642 (2019).

    CAS  PubMed  Google Scholar 

  50. Briston, T. & Hicks, A. R. Mitochondrial dysfunction and neurodegenerative proteinopathies: mechanisms and prospects for therapeutic intervention. Biochem. Soc. Trans. 46, 829–842 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Oliveira, L. T. et al. Exogenous β-amyloid peptide interferes with GLUT4 localization in neurons. Brain Res. 1615, 42–50 (2015).

    CAS  PubMed  Google Scholar 

  52. Ryu, J. C., Zimmer, E. R., Rosa-Neto, P. & Yoon, S. O. Consequences of metabolic disruption in Alzheimer’s disease pathology. Neurotherapeutics 16, 600–610 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. An, Y. et al. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. 14, 318–329 (2018).

    PubMed  Google Scholar 

  54. Toppala, S. et al. Midlife insulin resistance as a predictor for late-life cognitive function and cerebrovascular lesions. J. Alzheimers Dis. 72, 215–228 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bartzokis, G. Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. Neurobiol. Aging 32, 1341–1371 (2011).

    CAS  PubMed  Google Scholar 

  56. Klosinski, L. P. et al. White matter lipids as a ketogenic fuel supply in aging female brain: Implications for Alzheimer’s disease. EBioMedicine 2, 1888–1904 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Roy, M. et al. Fascicle- and glucose-specific deterioration in white matter energy supply in Alzheimer’s disease. J. Alzheimer’s Dis., in the press.

  58. Matthews, D. C. et al. FDG PET Parkinson’s disease-related pattern as a biomarker for clinical trials in early stage disease. Neuroimage Clin. 20, 572–579 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Chu, J. S. et al. The metabolic activity of caudate and prefrontal cortex negatively correlates with the severity of idiopathic Parkinson’s disease. Aging Dis. 10, 847–853 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Murphy, M. P. & Hartley, R. C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug. Discov. 17, 865–886 (2018).

    CAS  PubMed  Google Scholar 

  61. Zambon, F. et al. Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson’s iPSC-derived dopamine neurons. Hum. Mol. Genet. 28, 2001–2013 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. McColgan, P. et al. Brain regions showing white matter loss in Huntington’s disease are enriched for synaptic and metabolic genes. Biol. Psychiatry 83, 456–465 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Morea, V. et al. Glucose transportation in the brain and its impairment in Huntington disease: one more shade of the energetic metabolism failure? Amino Acids 49, 1147–1157 (2017).

    CAS  PubMed  Google Scholar 

  64. Liot, G., Valette, J., Pepin, J., Flament, J. & Brouillet, E. Energy defects in Huntington’s disease: why “in vivo” evidence matters. Biochem. Biophys. Res. Commun. 483, 1084–1095 (2017).

    CAS  PubMed  Google Scholar 

  65. Polyzos, A. A. et al. Metabolic reprogramming in astrocytes distinguishes region-specific neuronal susceptibility in Huntington mice. Cell Metab. 29, 1258–1273.e1211 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kedaigle, A. J. et al. Bioenergetic deficits in Huntington’s disease iPSC-derived neural cells and rescue with glycolytic metabolites. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddy430 (2019).

    Article  Google Scholar 

  67. Saudou, F. & Humbert, S. The biology of huntingtin. Neuron 89, 910–926 (2016).

    CAS  PubMed  Google Scholar 

  68. Ahmed, R. M. et al. Amyotrophic lateral sclerosis and frontotemporal dementia: distinct and overlapping changes in eating behaviour and metabolism. Lancet Neurol. 15, 332–342 (2016).

    PubMed  Google Scholar 

  69. Jawaid, A., Khan, R., Polymenidou, M. & Schulz, P. E. Disease-modifying effects of metabolic perturbations in ALS/FTLD. Mol. Neurodegener. https://doi.org/10.1186/s13024-018-0294-0 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vandoorne, T., De Bock, K. & Van Den Bosch, L. Energy metabolism in ALS: an underappreciated opportunity? Acta Neuropathol. 135, 489–509 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tefera, T. W., Bartlett, K., Tran, S. S., Hodson, M. P. & Borges, K. Impaired pentose phosphate pathway in the spinal cord of the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol. 56, 5844–5855 (2019).

    CAS  PubMed  Google Scholar 

  72. Lau, D. H. W. et al. Disruption of ER−mitochondria signalling in fronto-temporal dementia and related amyotrophic lateral sclerosis. Cell Death Dis. https://doi.org/10.1038/s41419-017-0022-7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Delic, V. et al. Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients. J. Neurosci. Res. 96, 1353–1366 (2018).

    CAS  PubMed  Google Scholar 

  74. Tefera, T. W. & Borges, K. Metabolic dysfunctions in amyotrophic lateral sclerosis pathogenesis and potential metabolic treatments. Front. Neurosci. https://doi.org/10.3389/fnins.2016.00611 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Allen, S. P. et al. C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain 142, 3771–3790 (2019).

    PubMed  PubMed Central  Google Scholar 

  76. Sintini, I. et al. Regional multimodal relationships between tau, hypometabolism, atrophy, and fractional anisotropy in atypical Alzheimer’s disease. Hum. Brain Mapp. https://doi.org/10.1002/hbm.24473 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Carbonell, F., Zijdenbos, A. P. & Bedell, B. J. Spatially distributed amyloid-β reduces glucose metabolism in mild cognitive impairment. J. Alzheimers Dis. 73, 543–557 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    CAS  PubMed  Google Scholar 

  79. Velliquette, R. A., O’Connor, T. & Vassar, R. Energy inhibition elevates β-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer’s disease pathogenesis. J. Neurosci. 25, 10874–10883 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Correia, S. C., Perry, G. & Moreira, P. I. Mitochondrial traffic jams in Alzheimer’s disease - pinpointing the roadblocks. Biochim. Biophys. Acta - Mol. Basis Dis. 1862, 1909–1917 (2016).

    CAS  Google Scholar 

  81. Ashraf, A., Fan, Z., Brooks, D. J. & Edison, P. Cortical hypermetabolism in mci subjects: a compensatory mechanism? Eur. J. Nucl. Med. Mol. Imaging 42, 447–458 (2014).

    PubMed  Google Scholar 

  82. Li, H., Liu, C.-C., Zheng, H. & Huang, T. Y. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease –conformist, nonconformist, and realistic prospects for ad pathogenesis. Transl. Neurodegener. https://doi.org/10.1186/s40035-018-0139-3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fülöp, T., Larbi, A. & Witkowski, J. M. Human inflammaging. Gerontology 65, 495–504 (2019).

    PubMed  Google Scholar 

  84. Millan, M. J., Rivet, J.-M. & Gobert, A. The frontal cortex as a network hub controlling mood and cognition: probing its neurochemical substrates for improved therapy of psychiatric and neurological disorders. J. Psychopharmacol. 30, 1099–1128 (2016).

    CAS  PubMed  Google Scholar 

  85. Yang, L., Wang, H., Liu, L. & Xie, A. The role of insulin/IGF-1/PI3K/AKT/GSK3β signaling in Parkinson’s disease dementia. Front. Neurosci. https://doi.org/10.3389/fnins.2018.00073 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Forny-Germano, L., De Felice, F. G. & Vieira, M. N. d. N. The role of leptin and adiponectin in obesity-associated cognitive decline and Alzheimer’s disease. Front. Neurosci. 12, 1027 (2019).

    PubMed  PubMed Central  Google Scholar 

  87. McGregor, G. & Harvey, J. Regulation of hippocampal synaptic function by the metabolic hormone, leptin: implications for health and neurodegenerative disease. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2018.00340 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shi, L., Du, X., Jiang, H. & Xie, J. Ghrelin and neurodegenerative disorders—a review. Mol. Neurobiol. 54, 1144–1155 (2016).

    PubMed  Google Scholar 

  89. Suda, Y. et al. Down-regulation of ghrelin receptors on dopaminergic neurons in the substantia nigra contributes to Parkinson’s disease-like motor dysfunction. Mol. Brain https://doi.org/10.1186/s13041-018-0349-8 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Frago, L. & Chowen, J. Involvement of astrocytes in mediating the central effects of ghrelin. Int. J. Mol. Sci. 18, 536 (2017).

    PubMed Central  Google Scholar 

  91. Fu, W., Patel, A., Kimura, R., Soudy, R. & Jhamandas, J. H. Amylin receptor: a potential therapeutic target for Alzheimer’s disease. Trends Mol. Med. 23, 709–720 (2017).

    CAS  PubMed  Google Scholar 

  92. Grizzanti, J., Corrigan, R., Servizi, S. & Casadesus, G. Amylin signaling in diabetes and Alzheimer’s disease: therapy or pathology? J. Neurol. Neuromedicine 4, 12–16 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Mietlicki-Baase, E. G. Amylin in Alzheimer’s disease: pathological peptide or potential treatment? Neuropharmacology 136, 287–297 (2018).

    CAS  PubMed  Google Scholar 

  94. Kim, M. W. et al. Suppression of adiponectin receptor 1 promotes memory dysfunction and Alzheimer’s disease-like pathologies. Sci. Rep. https://doi.org/10.1038/s41598-017-12632-9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ngo, S. T. et al. Altered expression of metabolic proteins and adipokines in patients with amyotrophic lateral sclerosis. J. Neurological. Sci. 357, 22–27 (2015).

    CAS  Google Scholar 

  96. Ma, J. et al. Peripheral blood adipokines and insulin levels in patients with Alzheimer’s disease: a replication study and meta-analysis. Curr. Alzheimer Res. 13, 223–233 (2016).

    CAS  PubMed  Google Scholar 

  97. Athauda, D. & Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today 21, 802–818 (2016).

    CAS  PubMed  Google Scholar 

  98. Mattson, M. P., Moehl, K., Ghena, N., Schmaedick, M. & Cheng, A. Intermittent metabolic switching, neuroplasticity and brain health. Nat. Rev. Neurosci. 19, 81–94 (2018).

    Google Scholar 

  99. Nugent, S. et al. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults. Am. J. Physiol. Endocrinol. Metab. 306, E1315–E1321 (2014).

    CAS  PubMed  Google Scholar 

  100. Castellano, C.-A. et al. Links between metabolic and structural changes in the brain of cognitively normal older adults: a 4-year longitudinal follow-up. Front. Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00015 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Goyal, M. S. et al. Loss of brain aerobic glycolysis in normal human aging. Cell Metab. 26, 353–360.e353 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. de la Torre, J. C. Are major dementias triggered by poor blood flow to the brain? Theoretical considerations. J. Alzheimers Dis. 57, 353–371 (2017).

    PubMed  Google Scholar 

  103. Sweeney, M. D. et al. Vascular dysfunction-the disregarded partner of Alzheimer’s disease. Alzheimers Dement. 15, 158–167 (2019).

    PubMed  PubMed Central  Google Scholar 

  104. Wingo, A. P. et al. Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nat. Commun. https://doi.org/10.1038/s41467-019-09613-z (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. de la Monte, S. M. The full spectrum of Alzheimer’s disease is rooted in metabolic derangements that drive type 3 diabetes. Adv. Exp. Med. Biol. 1128, 45–83 (2019).

    PubMed  Google Scholar 

  106. Li, S. & Laher, I. Exercise pills: at the starting line. Trends Pharmacol. Sci. 36, 906–917 (2015).

    CAS  PubMed  Google Scholar 

  107. Vieira, M. N. N., Lima-Filho, R. A. S. & De Felice, F. G. Connecting Alzheimer’s disease to diabetes: underlying mechanisms and potential therapeutic targets. Neuropharmacology 136, 160–171 (2018).

    CAS  PubMed  Google Scholar 

  108. Castellano, C.-A. et al. A 3-month aerobic training program improves brain energy metabolism in mild Alzheimer’s disease: preliminary results from a neuroimaging study. J. Alzheimers Dis. 56, 1459–1468 (2017).

    CAS  PubMed  Google Scholar 

  109. Penninx, B. & Lange, S. M. M. Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues Clin. Neurosci. 20, 63–73 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Verdile, G., Fuller, S. J. & Martins, R. N. The role of type 2 diabetes in neurodegeneration. Neurobiol. Dis. 84, 22–38 (2015).

    CAS  PubMed  Google Scholar 

  111. Mosconi, L. et al. Increased Alzheimer’s risk during the menopause transition: a 3-year longitudinal brain imaging study. PLoS ONE 13, e0207885 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Brinton, R. D., Yao, J., Yin, F., Mack, W. J. & Cadenas, E. Perimenopause as a neurological transition state. Nat. Rev. Endocrinol. 11, 393–405 (2015).

    CAS  PubMed  Google Scholar 

  113. Nuriel, T. et al. Neuronal hyperactivity due to loss of inhibitory tone in apoe4 mice lacking Alzheimer’s disease-like pathology. Nat. Commun. https://doi.org/10.1038/s41467-017-01444-0 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wu, L., Zhang, X. & Zhao, L. Human ApoE isoforms differentially modulate brain glucose and ketone body metabolism: implications for Alzheimer’s disease risk reduction and early intervention. J. Neurosci. 38, 6665–6681 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao, N. et al. Apolipoprotein e4 impairs neuronal insulin signaling by trapping insulin receptor in the endosomes. Neuron 96, 115–129 e115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Johnson, L. A. et al. Apolipoprotein E4 mediates insulin resistance-associated cerebrovascular dysfunction and the post-prandial response. J. Cereb. Blood Flow. Metab. 39, 770–781 (2017).

    PubMed  PubMed Central  Google Scholar 

  117. Nakamura, T., Watanabe, A., Fujino, T., Hosono, T. & Michikawa, M. Apolipoprotein E4 (1-272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells. Mol. Neurodegener. 4, 35 (2009).

    PubMed  PubMed Central  Google Scholar 

  118. Orr, A. L. et al. Neuronal apolipoprotein E4 expression results in proteome-wide alterations and compromises bioenergetic capacity by disrupting mitochondrial function. J. Alzheimers Dis. 68, 991–1011 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Henderson, S. T. et al. Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: a randomized, double-blind, placebo-controlled, multicenter trial. Nutr. Metab. 6, 31 (2009).

    Google Scholar 

  120. Xu, Q. et al. Medium-chain triglycerides improved cognition and lipid metabolomics in mild to moderate Alzheimer’s disease patients with APOE4 -/-: a double-blind, randomized, placebo-controlled crossover trial. Clin. Nutr. https://doi.org/10.1016/j.clnu.2019.10.017 (2019).

    Article  PubMed  Google Scholar 

  121. Larsen, S. B., Hanss, Z. & Krüger, R. The genetic architecture of mitochondrial dysfunction in Parkinson’s disease. Cell Tissue Res. 373, 21–37 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Funk, N. et al. The Parkinson’s disease-linked leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4. Sci. Rep. 9, 4515 (2019).

    PubMed  PubMed Central  Google Scholar 

  123. Joardar, A., Manzo, E. & Zarnescu, D. C. Metabolic dysregulation in amyotrophic lateral sclerosis: challenges and opportunities. Curr. Genet. Med. Rep. 5, 108–114 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Diehl-Schmid, J. et al. FDG-PET underscores the key role of the thalamus in frontotemporal lobar degeneration caused by C9ORF72 mutations. Transl. Psychiatry https://doi.org/10.1038/s41398-019-0381-1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Koppel, S. J. & Swerdlow, R. H. Neuroketotherapeutics: a modern review of a century-old therapy. Neurochem. Int. 117, 114–125 (2018).

    CAS  PubMed  Google Scholar 

  126. Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385, 2255–2263 (2015).

    PubMed  Google Scholar 

  127. Gaitan, J. M. et al. Two weeks of interval training enhances fat oxidation during exercise in obese adults with prediabetes. J. Sports Sci. Med. 18, 636–644 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Zhang, L. et al. Modulation of mitochondrial complex I activity averts cognitive decline in multiple animal models of familial Alzheimer’s disease. EBioMedicine 2, 294–305 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Flannery, P. J. & Trushina, E. Mitochondrial dynamics and transport in Alzheimer’s disease. Mol. Cell. Neurosci. 98, 109–120 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Baumgart, M. et al. Longitudinal RNA-seq analysis of vertebrate aging identifies mitochondrial complex I as a small-molecule-sensitive modifier of lifespan. Cell Syst. 2, 122–132 (2016).

    CAS  PubMed  Google Scholar 

  131. Raule, N. et al. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 13, 401–407 (2014).

    CAS  PubMed  Google Scholar 

  132. Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2017).

    PubMed  PubMed Central  Google Scholar 

  133. Burte, F., Carelli, V., Chinnery, P. F. & Yu-Wai-Man, P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11, 11–24 (2015).

    CAS  PubMed  Google Scholar 

  134. Manczak, M., Kandimalla, R., Yin, X. & Reddy, P. H. Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddy335 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bido, S., Soria, F. N., Fan, R. Z., Bezard, E. & Tieu, K. Mitochondrial division inhibitor-1 is neuroprotective in the A53T-α-synuclein rat model of Parkinson’s disease. Sci. Rep. 7, 7495 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Baek, S. H. et al. Inhibition of Drp1 ameliorates synaptic depression, Aβ deposition, and cognitive impairment in an Alzheimer’s disease model. J. Neurosci. 37, 5099–5110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilkins, H. M. et al. A mitochondrial biomarker-based study of s-equol in Alzheimer’s disease subjects: results of a single-arm, pilot trial. J. Alzheimers Dis. 59, 291–300 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Wu, B. et al. 2,4 DNP improves motor function, preserves medium spiny neuronal identity, and reduces oxidative stress in a mouse model of Huntington’s disease. Exp. Neurol. 293, 83–90 (2017).

    CAS  PubMed  Google Scholar 

  139. Dickey, A. S. et al. PPARδ activation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aal2332 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Xin, L. et al. Nutritional ketosis increases NAD+/NADH ratio in healthy human brain: an in vivo study by 31P-MRS. Front. Nutr. https://doi.org/10.3389/fnut.2018.00062 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Dellinger, R. W. et al. Repeat dose NRPT (nicotinamide riboside and pterostilbene) increases NAD+ levels in humans safely and sustainably: a randomized, double-blind, placebo-controlled study. NPJ Aging Mech. Dis. https://doi.org/10.1038/s41514-017-0016-9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hou, Y. et al. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new ad mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–E1885 (2018).

    CAS  PubMed  Google Scholar 

  143. Schöndorf, D. C. et al. The NAD+ precursor nicotinamide riboside rescues mitochondrial defects and neuronal loss in iPSC and fly models of Parkinson’s disease. Cell Rep. 23, 2976–2988 (2018).

    PubMed  Google Scholar 

  144. Wilkins, H. M. et al. Oxaloacetate enhances neuronal cell bioenergetic fluxes and infrastructure. J. Neurochem. 137, 76–87 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Cai, R. et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Invest. 129, 4539–4549 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Zilberter, M. et al. Dietary energy substrates reverse early neuronal hyperactivity in a mouse model of Alzheimer’s disease. J. Neurochem. 125, 157–171 (2013).

    CAS  PubMed  Google Scholar 

  147. Theurey, P. et al. Systems biology identifies preserved integrity but impaired metabolism of mitochondria due to a glycolytic defect in Alzheimer’s disease neurons. Aging Cell 18, e12924 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Roy, M. et al. Rapid adaptation of rat brain and liver metabolism to a ketogenic diet: an integrated study using 1H- and 13C-NMR spectroscopy. J. Cereb. Blood Flow. Metab. 35, 1154–1162 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. St-Pierre, V. et al. Plasma ketone and medium chain fatty acid response in humans consuming different medium chain triglycerides during a metabolic study day. Front. Nutr. 6, 46 (2019).

    PubMed  PubMed Central  Google Scholar 

  150. Tan, K. N., Carrasco-Pozo, C., McDonald, T. S., Puchowicz, M. & Borges, K. Tridecanoin is anticonvulsant, antioxidant, and improves mitochondrial function. J. Cereb. Blood Flow. Metab. 37, 2035–2048 (2017).

    CAS  PubMed  Google Scholar 

  151. Schwarzkopf, T. M., Koch, K. & Klein, J. Reduced severity of ischemic stroke and improvement of mitochondrial function after dietary treatment with the anaplerotic substance triheptanoin. Neuroscience 300, 201–209 (2015).

    CAS  PubMed  Google Scholar 

  152. Mochel, F. Triheptanoin for the treatment of brain energy deficit: a 14-year experience. J. Neurosci. Res. 95, 2236–2243 (2017).

    CAS  PubMed  Google Scholar 

  153. Marin-Valencia, I., Good, L. B., Ma, Q., Malloy, C. R. & Pascual, J. M. Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain. J. Cereb. Blood Flow. Metab. 33, 175–182 (2012).

    PubMed  PubMed Central  Google Scholar 

  154. Fortier, M. et al. A ketogenic drink improves brain energy and some measures of cognition in mild cognitive impairment. Alzheimers Dement. 15, 625–634 (2019).

    PubMed  Google Scholar 

  155. Krikorian, R. et al. Dietary ketosis enhances memory in mild cognitive impairment. Neurobiol. Aging 33, 425.e419–425.e427 (2012).

    Google Scholar 

  156. Neth, B. J. et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer’s disease: a pilot study. Neurobiol. Aging 86, 54–63 (2020).

    CAS  PubMed  Google Scholar 

  157. Taylor, M. K., Sullivan, D. K., Mahnken, J. D., Burns, J. M. & Swerdlow, R. H. Feasibility and efficacy data from a ketogenic diet intervention in Alzheimer’s disease. Alzheimers Dement. 4, 28–36 (2017).

    Google Scholar 

  158. Ota, M. et al. Effects of a medium-chain triglyceride-based ketogenic formula on cognitive function in patients with mild-to-moderate Alzheimer’s disease. Neurosci. Lett. 690, 232–236 (2019).

    CAS  PubMed  Google Scholar 

  159. Avgerinos, K. I., Egan, J. M., Mattson, M. P. & Kapogiannis, D. Medium chain triglycerides induce mild ketosis and may improve cognition in Alzheimer’s disease. A systematic review and meta-analysis of human studies. Ageing Res. Rev. 58, 101001 (2020).

    PubMed  Google Scholar 

  160. Phillips, M. C. L., Murtagh, D. K. J., Gilbertson, L. J., Asztely, F. J. S. & Lynch, C. D. P. Low-fat versus ketogenic diet in Parkinson’s disease: a pilot randomized controlled trial. Mov. Disord. 33, 1306–1314 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Krikorian, R. et al. Nutritional ketosis for mild cognitive impairment in Parkinson’s disease: a controlled pilot trial. Clin. Parkinsonism Relat. Disord. 1, 41–47 (2019).

    Google Scholar 

  162. Brandt, J. et al. Preliminary report on the feasibility and efficacy of the modified atkins diet for treatment of mild cognitive impairment and early Alzheimer’s disease. J. Alzheimers Dis. 68, 969–981 (2019).

    CAS  PubMed  Google Scholar 

  163. Shaafi, S. et al. The efficacy of the ketogenic diet on motor functions in Parkinson’s disease: a rat model. Iran. J. Neurol. 15, 63–69 (2016).

    PubMed  PubMed Central  Google Scholar 

  164. Ari, C. et al. Metabolic therapy with Deanna protocol supplementation delays disease progression and extends survival in amyotrophic lateral sclerosis (ALS) mouse model. PLoS ONE 9, e103526 (2014).

    PubMed  PubMed Central  Google Scholar 

  165. Ruskin, D. N. et al. A ketogenic diet delays weight loss and does not impair working memory or motor function in the R6/2 1J mouse model of Huntington’s disease. Physiol. Behav. 103, 501–507 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Ma, D. et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep. https://doi.org/10.1038/s41598-018-25190-5 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Reger, M. A. et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol. Aging 25, 311–314 (2004).

    CAS  PubMed  Google Scholar 

  168. Page, K. A. et al. Medium-chain fatty acids improve cognitive function in intensively treated type 1 diabetic patients and support in vitro synaptic transmission during acute hypoglycemia. Diabetes 58, 1237–1244 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wakade, C., Chong, R., Bradley, E., Thomas, B. & Morgan, J. Upregulation of GPR109A in Parkinson’s disease. PLoS ONE 9, e109818 (2014).

    PubMed  PubMed Central  Google Scholar 

  170. Fu, S.-P. et al. Anti-inflammatory effects of BHBA in both in vivo and in vitro parkinson’s disease models are mediated by GPR109A-dependent mechanisms. J. Neuroinflammation 12, 9 (2015).

    PubMed  PubMed Central  Google Scholar 

  171. Masino, S. A. & Rho, J. M. Metabolism and epilepsy: ketogenic diets as a homeostatic link. Brain Res. 1703, 26–30 (2019).

    CAS  PubMed  Google Scholar 

  172. Kashiwaya, Y. et al. A ketone ester diet exhibits anxiolytic and cognition-sparing properties, and lessens amyloid and tau pathologies in a mouse model of Alzheimer’s disease. Neurobiol. Aging 34, 1530–1539 (2013).

    CAS  PubMed  Google Scholar 

  173. Cucuzzella, M., Hite, A., Patterson, K., Saslow, L. & Heath, R. A clinician’s guide to inpatient low carbohydrate diets for remission of type 2 diabetes: toward a standard of care protocol. Diabetes Manag. 9, 7–19 (2019).

    Google Scholar 

  174. Ritze, Y. et al. Metabolic and cognitive outcomes of subchronic once-daily intranasal insulin administration in healthy men. Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00663 (2018).

    Article  Google Scholar 

  175. Rotermund, C., Machetanz, G. & Fitzgerald, J. C. The therapeutic potential of metformin in neurodegenerative diseases. Front. Endocrinol. https://doi.org/10.3389/fendo.2018.00400 (2018).

    Article  Google Scholar 

  176. Ou, Z. et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav. Immun. 69, 351–363 (2018).

    CAS  PubMed  Google Scholar 

  177. Arnoux, I. et al. Metformin reverses early cortical network dysfunction and behavior changes in Huntington’s disease. Elife https://doi.org/10.7554/eLife.38744 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Campbell, J. M. et al. Metformin use associated with reduced risk of dementia in patients with diabetes: a systematic review and meta-analysis. J. Alzheimer’s Dis. 65, 1225–1236 (2018).

    Google Scholar 

  179. Cameron, A. R. et al. Metformin selectively targets redox control of complex I energy transduction. Redox Biol. 14, 187–197 (2018).

    CAS  PubMed  Google Scholar 

  180. Rena, G., Hardie, D. G. & Pearson, E. R. The mechanisms of action of metformin. Diabetologia 60, 1577–1585 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Coll, A. P. et al. Gdf15 mediates the effects of metformin on body weight and energy balance. Nature 578, 444–448 (2020).

    CAS  PubMed  Google Scholar 

  182. Koenig, A. M. et al. Effects of the insulin sensitizer metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis. Assoc. Disord. 31, 107–113 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Luchsinger, J. A. et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial. J. Alzheimers Dis. 51, 501–514 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Lin, Y. et al. Corrigendum: evaluation of metformin on cognitive improvement in patients with non-dementia vascular cognitive impairment and abnormal glucose metabolism. Front. Aging Neurosci. 10, 322 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. Moore, E. M. et al. Increased risk of cognitive impairment in patients with diabetes is associated with metformin. Diabetes Care 36, 2981–2987 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Wiviott, S. D., Raz, I. & Sabatine, M. S. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 1881–1882 (2019).

    PubMed  Google Scholar 

  188. Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65, 1190–1195 (2016).

    CAS  PubMed  Google Scholar 

  189. Holst, J. J. & Madsbad, S. Semaglutide seems to be more effective the other GLP-1RAS. Ann. Transl. Med. https://doi.org/10.21037/atm.2017.11.10 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Goldenberg, R. M. & Steen, O. Semaglutide: review and place in therapy for adults with type 2 diabetes. Can. J. Diabetes 43, 136–145 (2019).

    PubMed  Google Scholar 

  191. Batista, A. F., Bodart-Santos, V., De Felice, F. G. & Ferreira, S. T. Neuroprotective actions of glucagon-like peptide-1 (GLP-1) analogues in Alzheimer’s and Parkinson’s diseases. CNS Drugs 33, 209–223 (2018).

    Google Scholar 

  192. Yildirim Simsir, I., Soyaltin, U. E. & Cetinkalp, S. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes Metab. Syndrome Clin. Res. Rev. 12, 469–475 (2018).

    Google Scholar 

  193. Sayed, N. H. et al. Vildagliptin attenuates Huntington’s disease through activation of GLP-1 receptor/PI3K/Akt/BDNF pathway in 3-nitropropionic acid rat model. Neurotherapeutics 17, 252–268 (2020).

    CAS  PubMed  Google Scholar 

  194. Gejl, M. et al. In Alzheimer’s disease, 6-month treatment with GLP-1 analog prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front. Aging Neurosci. https://doi.org/10.3389/fnagi.2016.00108 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Athauda, D. et al. Post hoc analysis of the Exenatide-PD trial—factors that predict response. Eur. J. Neurosci. 49, 410–421 (2018).

    PubMed  Google Scholar 

  196. Chalichem, N. S. S., Gonugunta, C., Krishnamurthy, P. T. & Duraiswamy, B. DPP4 inhibitors can be a drug of choice for type 3 diabetes: a mini review. Am. J. Alzheimers Dis. Other Demen. 32, 444–451 (2017).

    PubMed  Google Scholar 

  197. Isik, A. T., Soysal, P., Yay, A. & Usarel, C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res. Clin. Pract. 123, 192–198 (2017).

    CAS  PubMed  Google Scholar 

  198. Jalewa, J., Sharma, M. K. & Hölscher, C. Novel incretin analogues improve autophagy and protect from mitochondrial stress induced by rotenone in SH-SY5Y cells. J. Neurochem. 139, 55–67 (2016).

    CAS  PubMed  Google Scholar 

  199. Verma, M. K., Goel, R., Nandakumar, K. & Nemmani, K. V. S. Effect of D-Ala 2 GIP, a stable GIP receptor agonist on MPTP-induced neuronal impairments in mice. Eur. J. Pharmacol. 804, 38–45 (2017).

    CAS  PubMed  Google Scholar 

  200. Pathak, N. M. et al. Novel dual incretin agonist peptide with antidiabetic and neuroprotective potential. Biochem. Pharmacol. 155, 264–274 (2018).

    CAS  PubMed  Google Scholar 

  201. Hölscher, C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology 136, 251–259 (2018).

    PubMed  Google Scholar 

  202. Tai, J., Liu, W., Li, Y., Li, L. & Hölscher, C. Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res. 1678, 64–74 (2018).

    CAS  PubMed  Google Scholar 

  203. Rudenko, O. et al. Ghrelin-mediated improvements in the metabolic phenotype in the R6/2 mouse model of Huntington’s disease. J. Neuroendocrinol. https://doi.org/10.1111/jne.12699 (2019).

    Article  PubMed  Google Scholar 

  204. Jeong, Y.-o et al. MK-0677, a ghrelin agonist, alleviates amyloid beta-related pathology in 5XFAD mice, an animal model of Alzheimer’s disease. Int. J. Mol. Sci. 19, 1800 (2018).

    PubMed Central  Google Scholar 

  205. Morgan, A. H., Rees, D. J., Andrews, Z. B. & Davies, J. S. Ghrelin mediated neuroprotection - a possible therapy for Parkinson’s disease? Neuropharmacology 136, 317–326 (2018).

    CAS  PubMed  Google Scholar 

  206. Bayliss, J. A. et al. Ghrelin-AMPK signaling mediates the neuroprotective effects of calorie restriction in Parkinson’s disease. J. Neurosci. 36, 3049–3063 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Parkinson Study Group. A randomized trial of relamorelin for constipation in Parkinson’s disease (MOVE-PD): trial results and lessons learned. Parkinsonism Relat. Disord. 37, 101–105 (2017).

    Google Scholar 

  208. Malekizadeh, Y. et al. A leptin fragment mirrors the cognitive enhancing and neuroprotective actions of leptin. Cereb. Cortex 27, 4769–4782 (2016).

    PubMed Central  Google Scholar 

  209. Fernandez-Martos, C. M., Atkinson, R. A. K., Chuah, M. I., King, A. E. & Vickers, J. C. Combination treatment with leptin and pioglitazone in a mouse model of Alzheimer’s disease. Alzheimers Dement. 3, 92–106 (2016).

    Google Scholar 

  210. Lim, M. A. et al. Genetically altering organismal metabolism by leptin-deficiency benefits a mouse model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 23, 4995–5008 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Yoon, G., Shah, S. A., Ali, T. & Kim, M. O. The adiponectin homolog osmotin enhances neurite outgrowth and synaptic complexity via ADIPOR1/NGR1 signaling in Alzheimer’s disease. Mol. Neurobiol. 55, 6673–6686 (2018).

    CAS  PubMed  Google Scholar 

  212. Soudy, R. et al. Short amylin receptor antagonist peptides improve memory deficits in Alzheimer’s disease mouse model. Sci. Rep. 9, 10942 (2019).

    PubMed  PubMed Central  Google Scholar 

  213. Levin, B. E. & Lutz, T. A. Amylin and leptin: co-regulators of energy homeostasis and neuronal development. Trends Endocrinol. Metab. 28, 153–164 (2017).

    CAS  PubMed  Google Scholar 

  214. Patrick, S. et al. Neuroprotective effects of the amylin analog, pramlintide, on Alzheimer’s disease are associated with oxidative stress regulation mechanisms. J. Alzheimer’s Dis. 69, 157–168 (2019).

    CAS  Google Scholar 

  215. Wang, E. et al. Amylin treatment reduces neuroinflammation and ameliorates abnormal patterns of gene expression in the cerebral cortex of an Alzheimer’s disease mouse model. J. Alzheimer’s Dis. 56, 47–61 (2017).

    Google Scholar 

  216. Pinho, T. S., Correia, S. C., Perry, G., Ambrósio, A. F. & Moreira, P. I. Diminished O-GlcNAcylation in Alzheimer’s disease is strongly correlated with mitochondrial anomalies. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 2048–2059 (2019).

    CAS  PubMed  Google Scholar 

  217. Levine, P. M. et al. α-Synuclein O-GlcNAcylation alters aggregation and toxicity, revealing certain residues as potential inhibitors of Parkinson’s disease. Proc. Natl Acad. Sci. USA 116, 1511–1519 (2019).

    CAS  PubMed  Google Scholar 

  218. Yuzwa, S. A. & Vocadlo, D. J. O-GlcNAc and neurodegeneration: biochemical mechanisms and potential roles in Alzheimer’s disease and beyond. Chem. Soc. Rev. 43, 6839–6858 (2014).

    CAS  PubMed  Google Scholar 

  219. Haas, R. et al. Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem. Sci. 41, 460–471 (2016).

    CAS  PubMed  Google Scholar 

  220. Cobos, S. N., Bennett, S. A. & Torrente, M. P. The impact of histone post-translational modifications in neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1982–1991 (2019).

    CAS  PubMed  Google Scholar 

  221. Narayan, P. & Dragunow, M. Alzheimer’s disease and histone code alterations. Adv. Med. Biol. 1128, 321–336 (2017).

    Google Scholar 

  222. El Hayek, L. et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J. Neurosci. https://doi.org/10.1523/jneurosci.1661-18.2019 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Karnib, N. et al. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases. Neuropsychopharmacology 44, 1152–1162 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Xie, Z. et al. Metabolic regulation of gene expression by histone lysine β-hydroxybutyrylation. Mol. Cell 62, 194–206 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Poletti, V. & Biffi, A. Gene-based approaches to inherited neurometabolic diseases. Hum. Gene Ther. 30, 1222–1235 (2019).

    CAS  PubMed  Google Scholar 

  226. Mercuri, E. et al. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med. 378, 625–635 (2018).

    CAS  PubMed  Google Scholar 

  227. Millan, M. J. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review. Prog. Neurobiol. 156, 1–68 (2017).

    CAS  PubMed  Google Scholar 

  228. Fumagalli, M., Lombardi, M., Gressens, P. & Verderio, C. How to reprogram microglia toward beneficial functions. Glia 66, 2531–2549 (2018).

    PubMed  PubMed Central  Google Scholar 

  229. Maniati, M. S., Maniati, M., Yousefi, T., Ahmadi-Ahangar, A. & Tehrani, S. S. New insights into the role of microRNAs and long noncoding RNAs in most common neurodegenerative diseases. J. Cell. Biochem. 120, 8908–8918 (2019).

    CAS  PubMed  Google Scholar 

  230. Wild, E. J. & Tabrizi, S. J. One decade ago, one decade ahead in Huntington’s disease. Mov. Disord. 34, 1434–1439 (2019).

    PubMed  Google Scholar 

  231. Zeitler, B. et al. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med. 25, 1131–1142 (2019).

    CAS  PubMed  Google Scholar 

  232. Cappella, M., Ciotti, C., Cohen-Tannoudji, M. & Biferi, M. G. Gene therapy for ALS—a perspective. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20184388 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Savitt, D. & Jankovic, J. Targeting alpha-synuclein in Parkinson’s disease: progress towards the development of disease-modifying therapeutics. Drugs 79, 797–810 (2019).

    CAS  PubMed  Google Scholar 

  234. Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug. Discov. 17, 641–659 (2018).

    CAS  PubMed  Google Scholar 

  235. Al-Zaidy, S. A. et al. AVXS-101 (onasemnogene abeparvovec) for SMA1: comparative study with a prospective natural history cohort. J. Neuromuscul. Dis. 6, 307–317 (2019).

    PubMed  Google Scholar 

  236. Nakamura, S. et al. Gene therapy for Glut1-deficient mouse using an adeno-associated virus vector with the human intrinsic GLUT1 promoter. J. Gene Med. 20, e3013 (2018).

    PubMed  Google Scholar 

  237. Choong, C.-J. & Mochizuki, H. Gene therapy targeting mitochondrial pathway in Parkinson’s disease. J. Neural Transm. 124, 193–207 (2016).

    PubMed  Google Scholar 

  238. Rohn, T. T., Kim, N., Isho, N. F. & Mack, J. M. The potential of CRISPR/Cas9 gene editing as a treatment strategy for Alzheimer’s disease. J. Alzheimers Dis. Parkinsonism https://doi.org/10.4172/2161-0460.1000439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Safieh, M., Korczyn, A. D. & Michaelson, D. M. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med. 17, 64 (2019).

    PubMed  PubMed Central  Google Scholar 

  240. Uddin, M. S. et al. APOE and Alzheimer’s disease: evidence mounts that targeting APOE4 may combat Alzheimer’s pathogenesis. Mol. Neurobiol. 56, 2450–2465 (2019).

    CAS  PubMed  Google Scholar 

  241. Creus-Muncunill, J. et al. Increased translation as a novel pathogenic mechanism in Huntington’s disease. Brain 142, 3158–3175 (2019).

    Google Scholar 

  242. Takhashi, D. et al. AUTACS: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810 (2019).

    Google Scholar 

  243. de la Torre, J. C. Treating cognitive impairment with transcranial low level laser therapy. J. Photochem. Photobiol. B Biol. 168, 149–155 (2017).

    Google Scholar 

  244. Hamblin, M. R. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 6, 113–124 (2016).

    PubMed  PubMed Central  Google Scholar 

  245. Salehpour, F. et al. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose–induced aging mice. Neurobiol. Aging 58, 140–150 (2017).

    CAS  PubMed  Google Scholar 

  246. Berman, M. H. et al. Photobiomodulation with near infrared light helmet in a pilot, placebo controlled clinical trial in dementia patients testing memory and cognition. J. Neurol. Neurosci. https://doi.org/10.21767/2171-6625.1000176 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Martorell, A. J. et al. Multi-sensory gamma stimulation ameliorates Alzheimer’s-associated pathology and improves cognition. Cell 177, 256–271.e222 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Clemmensen, C. et al. Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nat. Rev. Endocrinol. 15, 90–104 (2018).

    Google Scholar 

  249. Cummings, J., Ritter, A. & Rothenberg, K. Advances in management of neuropsychiatric syndromes in neurodegenerative diseases. Curr. Psychiatry Rep. https://doi.org/10.1007/s11920-019-1058-4 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  250. de Freitas Silva, M., Dias, K. S. T., Gontijo, V. S., Ortiz, C. J. C. & Viegas, C. Multi-target directed drugs as a modern approach for drug design towards Alzheimer’s disease: an update. Curr. Med. Chem. 25, 3491–3525 (2018).

    PubMed  Google Scholar 

  251. Kivipelto, M., Mangialasche, F. & Ngandu, T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat. Rev. Neurol. 14, 653–666 (2018).

    PubMed  Google Scholar 

  252. McDonald, T., Puchowicz, M. & Borges, K. Impairments in oxidative glucose metabolism in epilepsy and metabolic treatments thereof. Front. Cell Neurosci. 12, 274 (2018).

    PubMed  PubMed Central  Google Scholar 

  253. E, L., Lu, J., Selfridge, J. E., Burns, J. M. & Swerdlow, R. H. Lactate administration reproduces specific brain and liver exercise-related changes. J. Neurochem. 127, 91–100 (2013).

    CAS  PubMed  Google Scholar 

  254. Morland, C. et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat. Commun. 8, 15557 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Insel, P. S. et al. Time to amyloid positivity and preclinical changes in brain metabolism, atrophy, and cognition: evidence for emerging amyloid pathology in Alzheimer’s disease. Front. Neurosci. https://doi.org/10.3389/fnins.2017.00281 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Liyanage, S. I., Santos, C. & Weaver, D. F. The hidden variables problem in Alzheimer’s disease clinical trial design. Alzheimers Dement. 4, 628–635 (2018).

    Google Scholar 

  257. McManus, M. J., Murphy, M. P. & Franklin, J. L. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 31, 15703–15715 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Zhao, F.-l. et al. AP39, a mitochondria-targeted hydrogen sulfide donor, supports cellular bioenergetics and protects against Alzheimer’s disease by preserving mitochondrial function in APP/PS1 mice and neurons. Oxid. Med. Cell. Longev. 2016, 1–19 (2016).

    Google Scholar 

  259. Sorrentino, V. et al. Enhancing mitochondrial proteostasis reduces amyloid-beta proteotoxicity. Nature 552, 187–193 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Zhao, Y. et al. ATAD3A oligomerization causes neurodegeneration by coupling mitochondrial fragmentation and bioenergetics defects. Nat. Commun. 10, 1371 (2019).

    PubMed  PubMed Central  Google Scholar 

  261. Miquel, E. et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free. Radic. Biol. Med. 70, 204–213 (2014).

    CAS  PubMed  Google Scholar 

  262. Stucki, D. M. et al. Mitochondrial impairments contribute to spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free. Radic. Biol. Med. 97, 427–440 (2016).

    CAS  PubMed  Google Scholar 

  263. Pawlosky, R. J. et al. Effects of a dietary ketone ester on hippocampal glycolytic and tricarboxylic acid cycle intermediates and amino acids in a 3xTgAD mouse model of Alzheimer’s disease. J. Neurochem. 141, 195–207 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  264. Cheng, A. et al. SIRT3 haploinsufficiency aggravates loss of GABAergic interneurons and neuronal network hyperexcitability in an Alzheimer’s disease model. J. Neurosci. 40, 694–709 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  265. Tieu, K. et al. D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J. Clin. Invest. 112, 892–901 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Zhao, W. et al. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS ONE 7, e49191 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Gong, B. et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol. Aging 34, 1581–1588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Costa, M. et al. N-Acetylcysteine protects memory decline induced by streptozotocin in mice. Chem. Biol. Interact. 253, 10–17 (2016).

    CAS  PubMed  Google Scholar 

  269. Tefera, T. W. et al. Triheptanoin protects motor neurons and delays the onset of motor symptoms in a mouse model of amyotrophic lateral sclerosis. PLoS ONE 11, e0161816 (2016).

    PubMed  PubMed Central  Google Scholar 

  270. Croteau, E. et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer’s disease. J. Alzheimer’s Dis. 64, 551–561 (2018).

    CAS  Google Scholar 

  271. Adanyeguh, I. M. et al. Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology 84, 490–495 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Mookerjee, S. A., Gerencser, A. A., Nicholls, D. G. & Brand, M. D. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. J. Biol. Chem. 292, 7189–7207 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Roe, C. R. & Brunengraber, H. Anaplerotic treatment of long-chain fat oxidation disorders with triheptanoin: review of 15 years experience. Mol. Genet. Metab. 116, 260–268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Hyder, F. et al. Uniform distributions of glucose oxidation and oxygen extraction in gray matter of normal human brain: no evidence of regional differences of aerobic glycolysis. J. Cereb. Blood Flow. Metab. 36, 903–916 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Jha, M. K. & Morrison, B. M. Glia-neuron energy metabolism in health and diseases: new insights into the role of nervous system metabolic transporters. Exp. Neurol. 309, 23–31 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Vardjan, N. et al. Enhancement of astroglial aerobic glycolysis by extracellular lactate-mediated increase in camp. Front. Mol. Neurosci. https://doi.org/10.3389/fnmol.2018.00148 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Vodovozov, W. et al. Metabolic modulation of neuronal gamma-band oscillations. Pflügers Arch. 470, 1377–1389 (2018).

    CAS  PubMed  Google Scholar 

  278. Terada, T. et al. In vivo mitochondrial and glycolytic impairments in patients with Alzheimer disease. Neurology 94, e1592–e1604 (2020).

    CAS  PubMed  Google Scholar 

  279. Castellano, C.-A. et al. Regional brain glucose hypometabolism in young women with polycystic ovary syndrome: possible link to mild insulin resistance. PLoS ONE 10, e0144116 (2015).

    PubMed  PubMed Central  Google Scholar 

  280. Khosravi, M. et al. 18F-FDG is a superior indicator of cognitive performance compared to 18F-florbetapir in Alzheimer’s disease and mild cognitive impairment evaluation: a global quantitative analysis. J. Alzheimers Dis. 70, 1197–1207 (2019).

    CAS  PubMed  Google Scholar 

  281. Chowdhury, G. M. I., Jiang, L., Rothman, D. L. & Behar, K. L. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo. J. Cereb. Blood Flow. Metab. 34, 1233–1242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. von Morze, C. et al. Direct assessment of renal mitochondrial redox state using hyperpolarized 13C-acetoacetate. Magn. Reson. Med. 79, 1862–1869 (2018).

    Google Scholar 

  283. Hasan-Olive, M. M. et al. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1α-SIRT3-UCP2 axis. Neurochem. Res. 44, 22–37 (2018).

    PubMed  Google Scholar 

  284. McCarty, M. F., DiNicolantonio, J. J. & O’Keefe, J. H. Ketosis may promote brain macroautophagy by activating Sirt1 and hypoxia-inducible factor-1. Med. Hypotheses 85, 631–639 (2015).

    CAS  PubMed  Google Scholar 

  285. Stekovic, S. et al. Alternate day fasting improves physiological and molecular markers of aging in healthy, non-obese humans. Cell Metab. 31, 878–881 (2020).

    CAS  PubMed  Google Scholar 

  286. Lourenco, M. V. et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat. Med. 25, 165–175 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Pedersen, B. K. Physical activity and muscle–brain crosstalk. Nat. Rev. Endocrinol. 15, 383–392 (2019).

    PubMed  Google Scholar 

  288. Cao, B. et al. Comparative efficacy and acceptability of antidiabetic agents for Alzheimer’s disease and mild cognitive impairment: a systematic review and network meta-analysis. Diabetes Obes. Metab. 20, 2467–2471 (2018).

    PubMed  Google Scholar 

  289. Li, A., Yau, S.-y., Machado, S., Yuan, T.-F. & So, K.-F. Adult neurogenic and antidepressant effects of adiponectin: a potential replacement for exercise? CNS Neurol. Disord. Drug Targets 14, 1129–1144 (2015).

    CAS  PubMed  Google Scholar 

  290. Kremen, W. S. et al. Influence of young adult cognitive ability and additional education on later-life cognition. Proc. Natl Acad. Sci. USA 116, 2021–2026 (2019).

    CAS  PubMed  Google Scholar 

  291. Carapelle, E. et al. How the cognitive reserve interacts with β-amyloid deposition in mitigating FDG metabolism. Medicine 96, e5876 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Arenaza-Urquijo, E. M. et al. The metabolic brain signature of cognitive resilience in the 80+: beyond Alzheimer pathologies. Brain 142, 1134–1147 (2019).

    PubMed  PubMed Central  Google Scholar 

  293. Croteau, E. et al. A cross-sectional comparison of brain glucose and ketone metabolism in cognitively healthy older adults, mild cognitive impairment and early Alzheimer’s disease. Exp. Gerontol. 107, 18–26 (2018).

    CAS  PubMed  Google Scholar 

  294. Cotto, B., Natarajanseenivasan, K. & Langford, D. HIV-1 infection alters energy metabolism in the brain: contributions to HIV-associated neurocognitive disorders. Prog. Neurobiol. 181, 101616 (2019).

    PubMed  PubMed Central  Google Scholar 

  295. Renard, D., Castelnovo, G., Collombier, L., Thouvenot, E. & Boudousq, V. FDG-PET in Creutzfeldt-Jakob disease: analysis of clinical-PET correlation. Prion 11, 440–453 (2017).

    PubMed  PubMed Central  Google Scholar 

  296. Bourgognon, J.-M. et al. Alterations in neuronal metabolism contribute to the pathogenesis of prion disease. Cell Death Differ. 25, 1408–1425 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Gunther, E. C. et al. Rescue of transgenic Alzheimer’s pathophysiology by polymeric cellular prion protein antagonists. Cell Rep. 26, 1368 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Norrving, B. Stroke management — recent advances and residual challenges. Nat. Rev. Neurol. 15, 69–71 (2019).

    PubMed  Google Scholar 

  299. Bazzigaluppi, P. et al. Imaging the effects of β-hydroxybutyrate on peri-infarct neurovascular function and metabolism. Stroke 49, 2173–2181 (2018).

    CAS  PubMed  Google Scholar 

  300. Lamade, A. M. et al. Aiming for the target: mitochondrial drug delivery in traumatic brain injury. Neuropharmacology 145, 209–219 (2019).

    CAS  PubMed  Google Scholar 

  301. Deng-Bryant, Y., Prins, M. L., Hovda, D. A. & Harris, N. G. Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. J. Neurotrauma 28, 1813–1825 (2011).

    PubMed  PubMed Central  Google Scholar 

  302. Arifianto, M., Ma’ruf, A., Ibrahim, A. & Bajamal, A. Role of hypertonic sodium lactate in traumatic brain injury management. Asian J. Neurosurg. 13, 971 (2018).

    PubMed  PubMed Central  Google Scholar 

  303. Koch, H. & Weber, Y. G. The glucose transporter type 1 (glut1) syndromes. Epilepsy Behav. 91, 90–93 (2019).

    PubMed  Google Scholar 

  304. Bakker, A., Albert, M. S., Krauss, G., Speck, C. L. & Gallagher, M. Response of the medial temporal lobe network in amnestic mild cognitive impairment to therapeutic intervention assessed by fMRI and memory task performance. NeuroImage Clin. 7, 688–698 (2015).

    PubMed  PubMed Central  Google Scholar 

  305. Dean, B., Thomas, N., Scarr, E. & Udawela, M. Evidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophrenia. Transl. Psychiatry 6, e949–e949 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  306. Kraeuter, A. K., Loxton, H., Lima, B. C., Rudd, D. & Sarnyai, Z. Ketogenic diet reverses behavioral abnormalities in an acute NMDA receptor hypofunction model of schizophrenia. Schizophrenia Res. 169, 491–493 (2015).

    Google Scholar 

  307. Wlodarczyk, A., Wiglusz, M. S. & Cubala, W. J. Ketogenic diet for schizophrenia: Nutritional approach to antipsychotic treatment. Med. Hypotheses 118, 74–77 (2018).

    CAS  PubMed  Google Scholar 

  308. Palmer, C. M. Ketogenic diet in the treatment of schizoaffective disorder: two case studies. Schizophrenia Res. 189, 208–209 (2017).

    Google Scholar 

  309. Gross, E. C., Lisicki, M., Fischer, D., Sandor, P. S. & Schoenen, J. The metabolic face of migraine - from pathophysiology to treatment. Nat. Rev. Neurol. 15, 627–643 (2019).

    CAS  PubMed  Google Scholar 

  310. Country, M. W. Retinal metabolism: a comparative look at energetics in the retina. Brain Res. 1672, 50–57 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article is based on the proceedings of a small, focused symposium organized by M.J.M. and supported by an unrestricted grant from Advances in Neuroscience for Medical Innovation, which is affiliated with the Institut de Recherche Servier. S.C.C. is supported by the Alzheimer’s Association (USA), the Canadian Institutes of Health Research, the Fonds de Recherche du Québec – Santé, the Natural Sciences and Engineering Research Council of Canada and Nestlé, and thanks V. St-Pierre, M. Fortier, A. Castellano, É. Myette-Côté, E. Croteau, M. Roy, M.-C. Morin and C. Vandenberghe in particular for outstanding help. M.J.M. thanks J.-M. Rivet for help with preparation of the original graphic artwork and M. Gaillot and her team for the ordering and provision of PDF documents consulted in the preparation of the manuscript. R.H.S. is supported by grants P30 AG035982, R01 AG060733 and R01 AG061194 from the US National Institutes of Health (NIH). E.T. is supported by the NIH National Institute on Aging (grant RF1AG55549) and National Institute of Neurological Disorders and Stroke (grants R01NS107265 and RO1AG062135). Z.B.A. is supported by a Senior Research Fellowship from the National Health and Medical Research Council of Australia (APP1154974). P.I.M. is supported by funding from the Alzheimer’s Association (NIRG-13-282387), European Regional Development Fund funds through the operational programme ‘Thematic Factors of Competitiveness’ and by the Portuguese Foundation for Science and Technology (grants PEst-C/SAU/LA0001/2013-2014 and UIDB/04539/2020). G.C. is supported by the NIH (grants 1R15AG050292 and 1R21AG064479). R.D.B. is supported by the National Institute on Aging (grants R37AG053589, R01AG057931 and P01-AG026572). J.H.J. is supported by grants from the Canadian Institutes of Health Research, Alberta Prion Research Institute, the Alzheimer’s Society of Alberta and Northwest Territories and the University Hospital Foundation (Edmonton, AB, Canada). L.H.B. holds grants from Nasjonalforeningen-Demensforbundet, Norway. A.E. is supported by the Swiss National Science Foundation (grant 31003A-179294). O.K. is supported by the Deutsche Forschungsgemeinschaft (grant CRC 1134, B02). M.P.M. is supported by the UK Medical Research Council (MC U105663142) and by a Wellcome Trust Investigator Award (110159/Z/15/Z). F.S. is funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (ADG grant agreement no. 834317). W.F.M. is supported by the European Research Council (ADG 666053 and VW 93046). A.P. is supported by the Deutsche Forschungsgemeinschaft (PR1527/5-1) and the German Federal Ministry of Education and Research (AZ.031A318 and 031L0211). K.A.N. is supported by the European Research Council (ADG 671048) and the Adelson Medical Research Foundation. C.M. was supported by the Research Council of Norway: 262647/F20.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen C. Cunnane or Mark J. Millan.

Ethics declarations

Competing interests

S.C.C. declares that he has consulted for and has received honoraria, test products and/or research funding from Abitec, Accera, Bulletproof, Nestlé and Servier, is the founder of Senotec and is co-inventor on a patent for a medium chain triglyceride formulation. M.J.M. declares that he is a full-time employee of Servier and has no other interests to declare. M.P.M. declares that he holds patents related to therapies targeted at decreasing oxidative damage to mitochondria. G.C. declares that she holds a patent related to compositions and methods for treating cognitive deficits using amylin and other hormones. A.E. declares that she has received honoraria, test products and/or research funding from Schwabe and Vifor. F.S. declares that he has consulted for Servier and TEVA. R.D.B. declares that she holds patents for therapeutics targeting Alzheimer disease and neurodegenerative disorders of ageing and is the founder of NeuTherapeutics. E.T. declares that she holds a patent related to compositions and methods for treating cognitive deficit using complex I inhibitors. All other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Neuroinflammation

An inflammatory response or state in the brain that involves functional, morphological and energetic shifts in microglia and ‘reactive’ astrocytes, as well as macrophages that migrate into the brain from the periphery. It is a characteristic of neurodegenerative disorders and brain response to infectious agents or injury.

Ketone bodies

(Ketones). β-Hydroxybutyrate and acetoacetate. Produced endogenously by fatty acid β-oxidation during caloric or severe carbohydrate restriction, and from medium-chain fatty acids. Exogenous ketones are mostly salts or esters of β-hydroxybutyrate. Acetone is a breakdown product of acetoacetate that is measurable in plasma and on breath.

Microglia

Resident brain macrophages of mesodermal origin that clear neurotoxic proteins and protect neurons from damaging exogenous molecules, toxins, infectious agents or pathogens. Excess and persistent microglial activation is associated with neuroinflammation, neuronal energetic deterioration and progression of neurodegenerative diseases of ageing.

Oligodendrocytes

Cells that produce myelin to insulate the axon and increase the speed of action potential propagation. They energetically support and communicate with neurons and astrocytes.

Neurovascular coupling

Coordinated response to brain activation involving local capillary dilation and a transitory surge in the flow of oxygenated, glucose-containing blood across the neurovascular unit, thereby replenishing ATP used in neurotransmission.

Insulin resistance

A state in which insulin is ineffective in stimulating glucose use by peripheral tissues and certain populations of neurons in the brain, due mainly to receptor-signalling desensitization. It is associated with glucose intolerance and type 2 diabetes, and increases the risk of neurodegenerative disorders, particularly Alzheimer disease.

Oxidative phosphorylation

Process by which mitochondria generate ATP by conveying electrons through enzyme complexes (I to IV), thereby creating a proton gradient that powers phosphorylation of ADP to ATP by ATP synthase.

Tricarboxylic acid cycle

(TCA cycle). Process by which acetyl coenzyme A is oxidized to form GTP, FADH2 and NADH. NADH and FADH2 feed electrons to the electron transport chain to produce ATP by oxidative phosphorylation. Several neurotransmitters (acetylcholine, glutamate and GABA) are produced by carbon leaving the TCA cycle.

Aerobic glycolysis

Conversion of glucose into pyruvate by the Emden–Meyerhoff pathway. Pyruvate is either converted into acetyl coenzyme A and enters the TCA cycle or reduced to lactate by NADH, a pathway prominent in glia to produce ATP without oxygen. Aerobic glycolysis may also occur in neurons.

Astrocyte–neuron lactate shuttle

The hypothesis that lactate produced in astrocytes is delivered to neurons to support the energy requirements of neurotransmission.

Fast axonal transport

Rapid transport of vesicles, mitochondria and other cargo along axonal microtubules. Vesicles are equipped with molecular motors (kinesin and dynein) and glycolytic enzymes, permitting rapid, local ATP production by aerobic glycolysis.

Incretins

Peptide hormones produced by the small intestine that stimulate pancreatic insulin secretion, regulate glucose metabolism and influence cognition. These include glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide.

Monocarboxylate transporters

Transporters in the cell membrane that facilitate unidirectional, proton-linked transport (uptake) of small monocarboxylic acids such as lactate and ketones.

Short-chain fatty acids

Acetate (two carbons), propionate (three carbons) and butyrate (four carbons). End products of microbial fermentation of dietary polysaccharides (soluble fibre). Butyrate is ketogenic and propionate is anaplerotic.

Cataplerosis

Process by which intermediates (carbon) leave the tricarboxylic acid cycle to support biochemical reactions; that is, acetylcholine and lipid synthesis from citrate, or amino acid synthesis from α-ketoglutarate and oxaloacetate; opposite of anaplerosis.

Mild cognitive impairment

(MCI). A condition prodromal to Alzheimer disease that is characterized by a subjective memory impairment and modest deficits in at least one of five main cognitive domains (executive function, memory, language, processing speed or attention). About 50% of cases progress to Alzheimer disease within 5 years.

Cerebral metabolic rate

Quantity of energy substrate consumed by the brain (micromoles per 100 g per minute). Typically refers to glucose, but also used for brain consumption of oxygen, lactate and ketones.

Brain energy gap

Deficit in brain energy metabolism of about 10% in mild cognitive impairment and of about 20% in early Alzheimer disease. Also present in other neurodegenerative disorders of ageing. It appears to be specific to glucose inasmuch as no studies to date have shown that brain ketone metabolism is affected.

Caloric restriction

Limiting food intake to a level that does not permit full satiety. Can be self-determined (usually the case in human studies) or imposed relative to the food consumed by a matched group fed ad libitum (usually only in animal studies).

Electron transport chain

A series of enzymatic protein complexes in the inner mitochondrial membrane that transfer electrons donated from NADH (complex I) or fatty acid dehydrogenase (complex II) to oxygen (complex IV).

Medium-chain triglycerides

Edible oils comprising saturated fatty acids of 6–14 carbons in length. These have long been used in clinical nutrition to support energy needs in diseases or conditions involving malabsorption. Eight-carbon medium-chain triglycerides are more ketogenic than those of 10 or 12 carbons.

Mitochondrial biogenesis

Renewal of mitochondria. In neurons, mitochondrial biogenesis occurs in the cell body with newly formed mitochondria being transported along the axon to dendritic synapses.

Redox state

Capacity of a molecule to be reduced or acquire electrons; opposite of oxidation. Many biological reactions involve the reduction of one molecular species while another is being simultaneously oxidized. Energy metabolism is highly dependent on the redox state of the cell.

Ketogenic diet

A very-low-carbohydrate, very-high-fat diet inciting the liver to produce ketones from free fatty acids released from adipose tissue because there is minimal insulin production. The stricter, medical form of the ketogenic diet developed to treat intractable epilepsy usually also limits dietary protein.

Anaplerosis

Process by which four-carbon or five-carbon units enter the tricarboxylic acid cycle independently of acetyl coenzyme A to replenish intermediates used in the synthesis of acetylcholine or lipids (from citrate) or amino acids (from α-ketoglutarate and oxaloacetate); opposite of cataplerosis.

Antagomirs

Also known as anti-microRNAs or blockmirs. Synthetic oligonucleotides engineered to silence endogenous microRNAs or prevent other molecules from binding to a specific mRNA.

Locked nucleic acids

RNAs in which the flexibility of the ribose ring has been restrained by adding a methylene bridge connecting the 2′ oxygen and 4′ carbon. Oligonucleotides containing locked nucleic acids have increased specificity, sensitivity and hybridization stability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunnane, S.C., Trushina, E., Morland, C. et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 19, 609–633 (2020). https://doi.org/10.1038/s41573-020-0072-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-020-0072-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing