Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The glymphatic system: implications for drugs for central nervous system diseases

Abstract

In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the glymphatic system.
Fig. 2: Potential pharmacological and non-pharmacological intervention targets for the glymphatic system.
Fig. 3: Hypothesized influence of glymphatic cerebrospinal fluid flow on the delivery of therapeutics to the central nervous system through four direct drug administration routes that circumvent the blood–brain barrier endothelium.

Similar content being viewed by others

References

  1. Banks, W. A. From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 15, 275–292 (2016).

    CAS  PubMed  Google Scholar 

  2. Terstappen, G. C., Meyer, A. H., Bell, R. D. & Zhang, W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 20, 362–383 (2021).

    CAS  PubMed  Google Scholar 

  3. Calias, P., Banks, W. A., Begley, D., Scarpa, M. & Dickson, P. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment. Pharmacol. Ther. 144, 114–122 (2014).

    CAS  PubMed  Google Scholar 

  4. Brøchner, C. B., Holst, C. B. & Møllgård, K. Outer brain barriers in rat and human development. Front. Neurosci. 9, 75–75 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Soderquist, R. G. & Mahoney, M. J. Central nervous system delivery of large molecules: challenges and new frontiers for intrathecally administered therapeutics. Expert Opin. Drug Deliv. 7, 285–293 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Plog, B. A. et al. Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI Insight 3, e120922 (2018).

    PubMed Central  Google Scholar 

  7. Lilius, T. O. et al. Dexmedetomidine enhances glymphatic brain delivery of intrathecally administered drugs. J. Control. Release 304, 29–38 (2019).

    CAS  PubMed  Google Scholar 

  8. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    PubMed  PubMed Central  Google Scholar 

  9. Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377 (2013).

    CAS  PubMed  Google Scholar 

  10. Ringstad, G. et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 3, e121537 (2018).

    PubMed Central  Google Scholar 

  11. Valnes, L. M. et al. Apparent diffusion coefficient estimates based on 24 hours tracer movement support glymphatic transport in human cerebral cortex. Sci. Rep. 10, 9176 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Watts, R., Steinklein, J. M., Waldman, L., Zhou, X. & Filippi, C. G. Measuring glymphatic flow in man using quantitative contrast-enhanced MRI. AJNR Am. J. Neuroradiol. 40, 648–651 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Alshuhri, M. S., Gallagher, L., Work, L. M. & Holmes, W. M. Direct imaging of glymphatic transport using H217O MRI. JCI Insight 6, e141159 (2021).

    PubMed Central  Google Scholar 

  14. Iliff, J. J. et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Invest. 123, 1299–1309 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hablitz, L. M. et al. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci. Adv. 5, eaav5447 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Benveniste, H. et al. Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiology 127, 976–988 (2017).

    CAS  PubMed  Google Scholar 

  17. Wang, C. & Holtzman, D. M. Bidirectional relationship between sleep and Alzheimer’s disease: role of amyloid, tau, and other factors. Neuropsychopharmacology 45, 104–120 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bah, T. M., Goodman, J. & Iliff, J. J. Sleep as a therapeutic target in the aging brain. Neurotherapeutics 16, 554–568 (2019).

    PubMed  PubMed Central  Google Scholar 

  19. Winer, J. R. et al. Tau and β-amyloid burden predict actigraphy-measured and self-reported impairment and misperception of human sleep. J. Neurosci. 41, 7687–7696 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rasmussen, M. K., Mestre, H. & Nedergaard, M. The glymphatic pathway in neurological disorders. Lancet Neurol. 17, 1016–1024 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nedergaard, M. & Goldman, S. A. Glymphatic failure as a final common pathway to dementia. Science 370, 50–56 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Benveniste, H. et al. The glymphatic system and waste clearance with brain aging: a review. Gerontology 65, 106–119 (2019).

    PubMed  Google Scholar 

  23. Mestre, H., Kostrikov, S., Mehta, R. I. & Nedergaard, M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clin. Sci. 131, 2257–2274 (2017).

    CAS  Google Scholar 

  24. Rasmussen, M. K., Mestre, H. & Nedergaard, M. Fluid transport in the brain. Physiol. Rev. 102, 1025–1151 (2021).

    PubMed  Google Scholar 

  25. Naseri Kouzehgarani, G. et al. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv. Drug Deliv. Rev. 173, 20–59 (2021).

    CAS  PubMed  Google Scholar 

  26. Fame, R. M. & Lehtinen, M. K. Emergence and developmental roles of the cerebrospinal fluid system. Dev. Cell 52, 261–275 (2020).

    CAS  PubMed  Google Scholar 

  27. Tarasoff-Conway, J. M. et al. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lehtinen, M. K. et al. The choroid plexus and cerebrospinal fluid: emerging roles in development, disease, and therapy. J. Neurosci. 33, 17553–17559 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bering, E. A. & Sato, O. Hydrocephalus: changes in formation and absorption of cerebrospinal fluid within the cerebral ventricles. J. Neurosurg. 20, 1050 (1963).

    PubMed  Google Scholar 

  30. Sato, O. et al. Bulk flow in the cerebrospinal fluid system of the dog. Acta Neurol. Scand. 51, 1–11 (1975).

    CAS  PubMed  Google Scholar 

  31. Li, Q. et al. Aquaporin 1 and the Na+/K+/2Cl cotransporter 1 are present in the leptomeningeal vasculature of the adult rodent central nervous system. Fluids Barriers CNS 17, 15 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Abbott, N. J. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem. Int. 45, 545–552 (2004).

    CAS  PubMed  Google Scholar 

  33. Weed, L. H. Studies on cerebro-spinal fluid. No. IV: the dual source of cerebro-spinal fluid. J. Med. Res. 31, 93–118.111 (1914).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Cushing, H. Studies on the cerebro-spinal fluid: I. Introduction. J. Med. Res. 31, 1–19 (1914).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rennels, M. L., Gregory, T. F., Blaumanis, O. R., Fujimoto, K. & Grady, P. A. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326, 47–63 (1985).

    CAS  PubMed  Google Scholar 

  36. Rennels, M. L., Blaumanis, O. R. & Grady, P. A. Rapid solute transport throughout the brain via paravascular fluid pathways. Adv. Neurol. 52, 431–439 (1990).

    CAS  PubMed  Google Scholar 

  37. Cserr, H. F. & Ostrach, L. H. Bulk flow of interstitial fluid after intracranial injection of blue dextran 2000. Exp. Neurol. 45, 50–60 (1974).

    CAS  PubMed  Google Scholar 

  38. Cserr, H. F., Cooper, D. N. & Milhorat, T. H. Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp. Eye Res. 25 (Suppl. 1), 461–473 (1977).

    PubMed  Google Scholar 

  39. Cserr, H. F., Cooper, D. N., Suri, P. K. & Patlak, C. S. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. 240, F319–F328 (1981).

    CAS  PubMed  Google Scholar 

  40. Cserr, H. F., Depasquale, M., Patlak, C. S. & Pullen, R. G. Convection of cerebral interstitial fluid and its role in brain volume regulation. Ann. NY Acad. Sci. 481, 123–134 (1986).

    CAS  PubMed  Google Scholar 

  41. Ichimura, T., Fraser, P. A. & Cserr, H. F. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 545, 103–113 (1991).

    CAS  PubMed  Google Scholar 

  42. Mestre, H. et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9, 4878 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Kress, B. T. et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76, 845–861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lundgaard, I. et al. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J. Cereb. Blood Flow Metab. 37, 2112–2124 (2017).

    CAS  PubMed  Google Scholar 

  45. Lundgaard, I. et al. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci. Rep. 8, 2246 (2018).

    PubMed  PubMed Central  Google Scholar 

  46. Fournier, A. P. et al. Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis. J. Cereb. Blood Flow Metab. 39, 1258–1265 (2019).

    PubMed  Google Scholar 

  47. Hadjihambi, A. et al. Impaired brain glymphatic flow in experimental hepatic encephalopathy. J. Hepatol. 70, 40–49 (2019).

    CAS  PubMed  Google Scholar 

  48. Iliff, J. J. et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J. Neurosci. 34, 16180–16193 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Mestre, H. et al. Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367, eaax7171 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, E., Sun, L., Zhang, Y., Wang, A. & Yan, J. Aquaporin4 knockout aggravates early brain injury following subarachnoid hemorrhage through impairment of the glymphatic system in rat brain. Acta Neurochir. Suppl. 127, 59–64 (2020).

    CAS  PubMed  Google Scholar 

  51. Plog, B. A. et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 35, 518–526 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Dolgin, E. Brain’s drain. Nat. Biotechnol. 38, 258–262 (2020).

    CAS  PubMed  Google Scholar 

  53. Mestre, H., Mori, Y. & Nedergaard, M. The brain’s glymphatic system: current controversies. Trends Neurosci. 43, 458–466 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mashour, G. A., Forman, S. A. & Campagna, J. A. Mechanisms of general anesthesia: from molecules to mind. Best Pract. Res. Clin. Anaesthesiol. 19, 349–364 (2005).

    CAS  PubMed  Google Scholar 

  55. Benias, P. C. et al. Structure and distribution of an unrecognized interstitium in human tissues. Sci. Rep. 8, 4947 (2018).

    PubMed  PubMed Central  Google Scholar 

  56. Thorne, R. G. & Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl Acad. Sci. USA 103, 5567–5572 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Assländer, J. et al. Single shot whole brain imaging using spherical stack of spirals trajectories. Neuroimage 73, 59–70 (2013).

    PubMed  Google Scholar 

  58. Kiviniemi, V. et al. Ultra-fast magnetic resonance encephalography of physiological brain activity — glymphatic pulsation mechanisms? J. Cereb. Blood Flow Metab. 36, 1033–1045 (2016).

    CAS  PubMed  Google Scholar 

  59. Dreha-Kulaczewski, S. et al. Inspiration is the major regulator of human CSF flow. J. Neurosci. 35, 2485–2491 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Helakari, H. et al. Human NREM sleep promotes brain-wide vasomotor and respiratory pulsations. J. Neurosci. 42, 2503–2515 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Eide, P. K. & Ringstad, G. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol. Open 4, 2058460115609635 (2015).

    PubMed  PubMed Central  Google Scholar 

  62. Eide, P. K., Vatnehol, S. A. S., Emblem, K. E. & Ringstad, G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci. Rep. 8, 7194 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Eide, P. K. & Ringstad, G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J. Cereb. Blood Flow Metab. 39, 1355–1368 (2018).

    PubMed  PubMed Central  Google Scholar 

  64. Ringstad, G., Vatnehol, S. A. S. & Eide, P. K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain 140, 2691–2705 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Eide, P. K., Vinje, V., Pripp, A. H., Mardal, K.-A. & Ringstad, G. Sleep deprivation impairs molecular clearance from the human brain. Brain 144, 863–874 (2021).

    PubMed  Google Scholar 

  66. Fultz, N. E. et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science 366, 628–631 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bernardi, G. et al. Sleep reverts changes in human gray and white matter caused by wake-dependent training. Neuroimage 129, 367–377 (2016).

    PubMed  Google Scholar 

  68. Ju, Y. E., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology — a bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).

    CAS  PubMed  Google Scholar 

  69. Ma, Q., Ineichen, B. V., Detmar, M. & Proulx, S. T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 8, 1434 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Bradbury, M. W. & Westrop, R. J. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J. Physiol. 339, 519–534 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kida, S., Pantazis, A. & Weller, R. O. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol. Appl. Neurobiol. 19, 480–488 (1993).

    CAS  PubMed  Google Scholar 

  72. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Aspelund, A. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 212, 991–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Louveau, A. et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J. Clin. Invest. 127, 3210–3219 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Pollay, M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res. 7, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  76. Coles, J. A., Myburgh, E., Brewer, J. M. & McMenamin, P. G. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog. Neurobiol. 156, 107–148 (2017).

    PubMed  Google Scholar 

  77. Bucchieri, F., Farina, F., Zummo, G. & Cappello, F. Lymphatic vessels of the dura mater: a new discovery? J. Anat. 227, 702–703 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Da Mesquita, S. et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560, 185–191 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Da Mesquita, S. et al. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature 593, 255–260 (2021).

    PubMed  PubMed Central  Google Scholar 

  80. Louveau, A. et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci. 21, 1380–1391 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, Y. et al. Impairment of the glymphatic pathway and putative meningeal lymphatic vessels in the aging human. Ann. Neurol. 87, 357–369 (2020).

    CAS  PubMed  Google Scholar 

  82. Absinta, M. et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. eLife 6, e29738 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Ringstad, G. & Eide, P. K. Cerebrospinal fluid tracer efflux to parasagittal dura in humans. Nat. Commun. 11, 354 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Eide, P. K. et al. Clinical application of intrathecal gadobutrol for assessment of cerebrospinal fluid tracer clearance to blood. JCI Insight 6, e147063 (2021).

    PubMed Central  Google Scholar 

  85. Melin, E., Eide, P. K. & Ringstad, G. In vivo assessment of cerebrospinal fluid efflux to nasal mucosa in humans. Sci. Rep. 10, 14974 (2020).

    PubMed  PubMed Central  Google Scholar 

  86. de Leon, M. J. et al. Cerebrospinal fluid clearance in Alzheimer disease measured with dynamic PET. J. Nucl. Med. 58, 1471–1476 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Proulx, S. T. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell. Mol. Life Sci. 78, 2429–2457 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Meng, Y. et al. Glymphatics visualization after focused ultrasound induced blood–brain barrier opening in humans. Ann. Neurol. 86, 975–980 (2019).

    CAS  PubMed  Google Scholar 

  89. Hynynen, K. & Jolesz, F. A. Demonstration of potential noninvasive ultrasound brain therapy through an intact skull. Ultrasound Med. Biol. 24, 275–283 (1998).

    CAS  PubMed  Google Scholar 

  90. Wang, X. et al. An ocular glymphatic clearance system removes β-amyloid from the rodent eye. Sci. Transl Med. 12, eaaw3210 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Xia, M., Yang, L., Sun, G., Qi, S. & Li, B. Mechanism of depression as a risk factor in the development of Alzheimer’s disease: the function of AQP4 and the glymphatic system. Psychopharmacology 234, 365–379 (2017).

    CAS  PubMed  Google Scholar 

  92. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Peng, W. et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 93, 215–225 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Harrison, I. F. et al. Impaired glymphatic function and clearance of tau in an Alzheimer’s disease model. Brain 143, 2576–2593 (2020).

    PubMed  PubMed Central  Google Scholar 

  95. Wang, M. et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J. Neurosci. 37, 2870–2877 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu, T. T. et al. Mesenchymal stem cells alleviate AQP-4-dependent glymphatic dysfunction and improve brain distribution of antisense oligonucleotides in BACHD mice. Stem Cell 38, 218–230 (2020).

    CAS  Google Scholar 

  97. Hirose, M. et al. Stagnation of glymphatic interstitial fluid flow and delay in waste clearance in the SOD1-G93A mouse model of ALS. Neurosci. Res. 171, 74–82 (2020).

    PubMed  Google Scholar 

  98. Chen, X. et al. Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nat. Aging 2, 214–223 (2022).

    Google Scholar 

  99. Eide, P. K. & Ringstad, G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J. Cereb. Blood Flow Metab. 39, 1355–1368 (2019).

    PubMed  Google Scholar 

  100. Eide, P. K., Valnes, L. M., Pripp, A. H., Mardal, K. A. & Ringstad, G. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J. Cereb. Blood Flow Metab. 40, 1849–1858 (2020).

    CAS  PubMed  Google Scholar 

  101. Bae, Y. J. et al. Altered glymphatic system in idiopathic normal pressure hydrocephalus. Parkinsonism Relat. Disord. 82, 56–60 (2021).

    CAS  PubMed  Google Scholar 

  102. Yang, G., Deng, N., Liu, Y., Gu, Y. & Yao, X. Evaluation of glymphatic system using diffusion MR technique in T2DM cases. Front. Hum. Neurosci. 14, 300 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Taoka, T. et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Jpn. J. Radiol. 35, 172–178 (2017).

    PubMed  Google Scholar 

  104. Blair, G. W. et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology 94, e2258–e2269 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gaberel, T. et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45, 3092–3096 (2014).

    CAS  PubMed  Google Scholar 

  106. Zbesko, J. C. et al. Glial scars are permeable to the neurotoxic environment of chronic stroke infarcts. Neurobiol. Dis. 112, 63–78 (2018).

    PubMed  PubMed Central  Google Scholar 

  107. Leys, D., Hénon, H., Mackowiak-Cordoliani, M. A. & Pasquier, F. Poststroke dementia. Lancet Neurol. 4, 752–759 (2005).

    PubMed  Google Scholar 

  108. Sofroniew, M. V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Goulay, R. et al. Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke 48, 2301–2305 (2017).

    PubMed  Google Scholar 

  110. Luo, C. et al. Paravascular pathways contribute to vasculitis and neuroinflammation after subarachnoid hemorrhage independently of glymphatic control. Cell Death Dis. 7, e2160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Macdonald, R. L. Delayed neurological deterioration after subarachnoid haemorrhage. Nat. Rev. Neurol. 10, 44–58 (2014).

    CAS  PubMed  Google Scholar 

  112. Johnson, V. E., Stewart, W. & Smith, D. H. Widespread τ and amyloid-β pathology many years after a single traumatic brain injury in humans. Brain Pathol. 22, 142–149 (2012).

    CAS  PubMed  Google Scholar 

  113. Mohamed, A. Z., Cumming, P., Götz, J. & Nasrallah, F. Tauopathy in veterans with long-term posttraumatic stress disorder and traumatic brain injury. Eur. J. Nucl. Med. Mol. Imaging 46, 1139–1151 (2019).

    PubMed  PubMed Central  Google Scholar 

  114. Ren, Z. et al. ‘Hit & run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J. Cereb. Blood Flow Metab. 33, 834–845 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Bolte, A. C. et al. Meningeal lymphatic dysfunction exacerbates traumatic brain injury pathogenesis. Nat. Commun. 11, 4524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Lu, H., Zhan, Y., Ai, L., Chen, H. & Chen, J. AQP4-siRNA alleviates traumatic brain edema by altering post-traumatic AQP4 polarity reversal in TBI rats. J. Clin. Neurosci. 81, 113–119 (2020).

    CAS  PubMed  Google Scholar 

  117. Auguste, K. I. et al. Greatly impaired migration of implanted aquaporin-4-deficient astroglial cells in mouse brain toward a site of injury. FASEB J. 21, 108–116 (2007).

    CAS  PubMed  Google Scholar 

  118. Lu, D. C., Zador, Z., Yao, J., Fazlollahi, F. & Manley, G. T. Aquaporin-4 reduces post-traumatic seizure susceptibility by promoting astrocytic glial scar formation in mice. J. Neurotrauma 38, 1193–1201 (2011).

    Google Scholar 

  119. Li, Y. et al. Effect of early normobaric hyperoxia on blast-induced traumatic brain injury in rats. Neurochem. Res. 45, 2723–2731 (2020).

    CAS  PubMed  Google Scholar 

  120. Zusman, B. E., Kochanek, P. M. & Jha, R. M. Cerebral edema in traumatic brain injury: a historical framework for current therapy. Curr. Treat. Options Neurol. 22, 9 (2020).

    PubMed  PubMed Central  Google Scholar 

  121. Purdon, P. L., Sampson, A., Pavone, K. J. & Brown, E. N. Clinical electroencephalography for anesthesiologists: part I: background and basic signatures. Anesthesiology 123, 937–960 (2015).

    CAS  PubMed  Google Scholar 

  122. von Holstein-Rathlou, S., Petersen, N. C. & Nedergaard, M. Voluntary running enhances glymphatic influx in awake behaving, young mice. Neurosci. Lett. 662, 253–258 (2018).

    Google Scholar 

  123. He, X. F. et al. Voluntary exercise promotes glymphatic clearance of amyloid β and reduces the activation of astrocytes and microglia in aged mice. Front. Mol. Neurosci. 10, 144 (2017).

    PubMed  PubMed Central  Google Scholar 

  124. Liu, X. et al. Polyunsaturated fatty acid supplement alleviates depression-incident cognitive dysfunction by protecting the cerebrovascular and glymphatic systems. Brain Behav. Immun. 89, 357–370 (2020).

    CAS  PubMed  Google Scholar 

  125. Ren, H. et al. Omega-3 polyunsaturated fatty acids promote amyloid-β clearance from the brain through mediating the function of the glymphatic system. FASEB J. 31, 282–293 (2017).

    CAS  PubMed  Google Scholar 

  126. Lee, H. et al. The effect of body posture on brain glymphatic transport. J. Neurosci. 35, 11034–11044 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Liu, G. et al. Direct measurement of cerebrospinal fluid production in mice. Cell Rep. 33, 108524 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mortensen, K. N. et al. Impaired glymphatic transport in spontaneously hypertensive rats. J. Neurosci. 39, 6365–6377 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wardlaw, J. M. et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat. Rev. Neurol. 16, 137–153 (2020).

    PubMed  Google Scholar 

  130. Iliff, J. J. et al. Cerebral arterial pulsation drives paravascular CSF–interstitial fluid exchange in the murine brain. J. Neurosci. 33, 18190–18199 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Cermakova, P. et al. Heart failure and Alzheimer’s disease. J. Intern. Med. 277, 406–425 (2015).

    CAS  PubMed  Google Scholar 

  132. Tomlinson, B. E., Pierides, A. M. & Bradley, W. G. Central pontine myelinolysis. Two cases associated electrolyte disturbance. Q. J. Med. 45, 373–386 (1976).

    CAS  PubMed  Google Scholar 

  133. Kleinschmidt-DeMasters, B. K. & Norenberg, M. D. Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science 211, 1068–1070 (1981).

    CAS  PubMed  Google Scholar 

  134. Andreucci, V. E., Russo, D., Cianciaruso, B. & Andreucci, M. Some sodium, potassium and water changes in the elderly and their treatment. Nephrol. Dial. Transplant. 11, 9–17 (1996).

    PubMed  Google Scholar 

  135. Järvelä, K., Koskinen, M. & Kööbi, T. Effects of hypertonic saline (7.5%) on extracellular fluid volumes in healthy volunteers. Anaesthesia 58, 878–881 (2003).

    PubMed  Google Scholar 

  136. Pizzo, M. E. et al. Intrathecal antibody distribution in the rat brain: surface diffusion, perivascular transport and osmotic enhancement of delivery. J. Physiol. 596, 445–475 (2018).

    CAS  PubMed  Google Scholar 

  137. Verkman, A. S., Smith, A. J., Phuan, P. W., Tradtrantip, L. & Anderson, M. O. The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin. Ther. Targets 21, 1161–1170 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Nagelhus, E. A. & Ottersen, O. P. Physiological roles of aquaporin-4 in brain. Physiol. Rev. 93, 1543–1562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Yao, X., Derugin, N., Manley, G. T. & Verkman, A. S. Reduced brain edema and infarct volume in aquaporin-4 deficient mice after transient focal cerebral ischemia. Neurosci. Lett. 584, 368–372 (2015).

    CAS  PubMed  Google Scholar 

  140. Manley, G. T. et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 6, 159–163 (2000).

    CAS  PubMed  Google Scholar 

  141. Igarashi, H., Huber, V. J., Tsujita, M. & Nakada, T. Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema. Neurol. Sci. 32, 113–116 (2011).

    PubMed  Google Scholar 

  142. Pirici, I. et al. Inhibition of aquaporin-4 improves the outcome of ischaemic stroke and modulates brain paravascular drainage pathways. Int. J. Mol. Sci. 19, 46 (2017).

    PubMed Central  Google Scholar 

  143. Yang, B., Zador, Z. & Verkman, A. S. Glial cell aquaporin-4 overexpression in transgenic mice accelerates cytotoxic brain swelling. J. Biol. Chem. 283, 15280–15286 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Huber, V. J., Igarashi, H., Ueki, S., Kwee, I. L. & Nakada, T. Aquaporin-4 facilitator TGN-073 promotes interstitial fluid circulation within the blood–brain barrier: [17O]H2O JJVCPE MRI study. Neuroreport 29, 697–703 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Detmers, F. J. et al. Quaternary ammonium compounds as water channel blockers. Specificity, potency, and site of action. J. Biol. Chem. 281, 14207–14214 (2006).

    CAS  PubMed  Google Scholar 

  146. Huber, V. J., Tsujita, M., Yamazaki, M., Sakimura, K. & Nakada, T. Identification of arylsulfonamides as aquaporin 4 inhibitors. Bioorg. Med. Chem. Lett. 17, 1270–1273 (2007).

    CAS  PubMed  Google Scholar 

  147. Migliati, E. et al. Inhibition of aquaporin-1 and aquaporin-4 water permeability by a derivative of the loop diuretic bumetanide acting at an internal pore-occluding binding site. Mol. Pharmacol. 76, 105–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Huber, V. J., Tsujita, M., Kwee, I. L. & Nakada, T. Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg. Med. Chem. 17, 418–424 (2009).

    CAS  PubMed  Google Scholar 

  149. Yang, B., Zhang, H. & Verkman, A. S. Lack of aquaporin-4 water transport inhibition by antiepileptics and arylsulfonamides. Bioorg. Med. Chem. 16, 7489–7493 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sherpa, A. D., Xiao, F., Joseph, N., Aoki, C. & Hrabetova, S. Activation of β-adrenergic receptors in rat visual cortex expands astrocytic processes and reduces extracellular space volume. Synapse 70, 307–316 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Beaman, E. E. et al. Blood–brain barrier permeable β-blockers linked to lower risk of Alzheimer’s disease in hypertension. Brain https://doi.org/10.1093/brain/awac076 (2022).

    Article  PubMed  Google Scholar 

  152. Monai, H. et al. Adrenergic receptor antagonism induces neuroprotection and facilitates recovery from acute ischemic stroke. Proc. Natl Acad. Sci. USA 116, 11010–11019 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Groothuis, D. R. et al. Efflux of drugs and solutes from brain: the interactive roles of diffusional transcapillary transport, bulk flow and capillary transporters. J. Cereb. Blood Flow Metab. 27, 43–56 (2007).

    CAS  PubMed  Google Scholar 

  154. Benveniste, H., Heerdt, P. M., Fontes, M., Rothman, D. L. & Volkow, N. D. Glymphatic system function in relation to anesthesia and sleep states. Anesth. Analg. 128, 747–758 (2019).

    PubMed  Google Scholar 

  155. Peltoniemi, M. A., Hagelberg, N. M., Olkkola, K. T. & Saari, T. I. Ketamine: a review of clinical pharmacokinetics and pharmacodynamics in anesthesia and pain therapy. Clin. Pharmacokinet. 55, 1059–1077 (2016).

    CAS  PubMed  Google Scholar 

  156. Ganjoo, P. et al. In vivo effects of dexmedetomidine on laser-Doppler flow and pial arteriolar diameter. Anesthesiology 88, 429–439 (1998).

    CAS  PubMed  Google Scholar 

  157. Karlsson, B. R., Forsman, M., Roald, O. K., Heier, M. S. & Steen, P. A. Effect of dexmedetomidine, a selective and potent α2-agonist, on cerebral blood flow and oxygen consumption during halothane anesthesia in dogs. Anesth. Analg. 71, 125–129 (1990).

    CAS  PubMed  Google Scholar 

  158. Zornow, M. H., Fleischer, J. E., Scheller, M. S., Nakakimura, K. & Drummond, J. C. Dexmedetomidine, an α2-adrenergic agonist, decreases cerebral blood flow in the isoflurane-anesthetized dog. Anesth. Analg. 70, 624–630 (1990).

    CAS  PubMed  Google Scholar 

  159. McPherson, R. W., Kirsch, J. R. & Traystman, R. J. Inhibition of nitric oxide synthase does not affect α2-adrenergic-mediated cerebral vasoconstriction. Anesth. Analg. 78, 67–72 (1994).

    CAS  PubMed  Google Scholar 

  160. Weerink, M. A. S. et al. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin. Pharmacokinet. 56, 893–913 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Cecchelli, R. et al. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug Discov. 6, 650–661 (2007).

    CAS  PubMed  Google Scholar 

  162. Bard, F. et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6, 916–919 (2000).

    CAS  PubMed  Google Scholar 

  163. Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 37, 13–25 (2010).

    CAS  PubMed  Google Scholar 

  164. St-Amour, I. et al. Brain bioavailability of human intravenous immunoglobulin and its transport through the murine blood–brain barrier. J. Cereb. Blood Flow Metab. 33, 1983–1992 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Syvänen, S. et al. Efficient clearance of Aβ protofibrils in AβPP-transgenic mice treated with a brain-penetrating bifunctional antibody. Alzheimers Res. Ther. 10, 49 (2018).

    PubMed  PubMed Central  Google Scholar 

  166. Agrawal, M. et al. Recent advancements in liposomes targeting strategies to cross blood–brain barrier (BBB) for the treatment of Alzheimer’s disease. J. Control. Release 260, 61–77 (2017).

    CAS  PubMed  Google Scholar 

  167. Tang, W. et al. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 48, 2967–3014 (2019).

    CAS  PubMed  Google Scholar 

  168. Banks, W. A. et al. Anti-amyloid β protein antibody passage across the blood–brain barrier in the SAMP8 mouse model of Alzheimer’s disease: an age-related selective uptake with reversal of learning impairment. Exp. Neurol. 206, 248–256 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Koning, M. V., Klimek, M., Rijs, K., Stolker, R. J. & Heesen, M. A. Intrathecal hydrophilic opioids for abdominal surgery: a meta-analysis, meta-regression, and trial sequential analysis. Br. J. Anaesth. 125, 358–372 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. DeBalli, P. & Breen, T. W. Intrathecal opioids for combined spinal–epidural analgesia during labour. CNS Drugs 17, 889–904 (2003).

    CAS  PubMed  Google Scholar 

  171. Bruel, B. M. & Burton, A. W. Intrathecal therapy for cancer-related pain. Pain Med. 17, 2404–2421 (2016).

    PubMed  PubMed Central  Google Scholar 

  172. Ng, K., Mabasa, V. H., Chow, I. & Ensom, M. H. Systematic review of efficacy, pharmacokinetics, and administration of intraventricular vancomycin in adults. Neurocrit. Care 20, 158–171 (2014).

    CAS  PubMed  Google Scholar 

  173. Ertzgaard, P., Campo, C. & Calabrese, A. Efficacy and safety of oral baclofen in the management of spasticity: a rationale for intrathecal baclofen. J. Rehabil. Med. 49, 193–203 (2017).

    PubMed  Google Scholar 

  174. Khan, N. R. et al. Fibrinolysis for intraventricular hemorrhage: an updated meta-analysis and systematic review of the literature. Stroke 45, 2662–2669 (2014).

    PubMed  Google Scholar 

  175. Ruggiero, A. et al. Intrathecal chemotherapy with antineoplastic agents in children. Paediatr. Drugs 3, 237–246 (2001).

    CAS  PubMed  Google Scholar 

  176. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    CAS  PubMed  Google Scholar 

  177. Finkel, R. S. et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388, 3017–3026 (2016).

    CAS  PubMed  Google Scholar 

  178. Yang, L. et al. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J. Transl Med. 11, 107 (2013).

    PubMed  PubMed Central  Google Scholar 

  179. Moen, V., Dahlgren, N. & Irestedt, L. Severe neurological complications after central neuraxial blockades in Sweden 1990–1999. Anesthesiology 101, 950–959 (2004).

    CAS  PubMed  Google Scholar 

  180. Quintana, D. S., Guastella, A. J., Westlye, L. T. & Andreassen, O. A. The promise and pitfalls of intranasally administering psychopharmacological agents for the treatment of psychiatric disorders. Mol. Psychiatry 21, 29–38 (2016).

    CAS  PubMed  Google Scholar 

  181. Fowler, M. J. et al. Intrathecal drug delivery in the era of nanomedicine. Adv. Drug Deliv. Rev. 165-166, 77–95 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Bottros, M. M. & Christo, P. J. Current perspectives on intrathecal drug delivery. J. Pain Res. 7, 615–626 (2014).

    PubMed  PubMed Central  Google Scholar 

  183. Kent, C. N., Park, C. & Lindsley, C. W. Classics in chemical neuroscience: baclofen. ACS Chem. Neurosci. 11, 1740–1755 (2020).

    CAS  PubMed  Google Scholar 

  184. Hladky, S. B. & Barrand, M. A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 11, 26 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Blomqvist, K. J. et al. Systemic hypertonic saline enhances glymphatic spinal cord delivery of lumbar intrathecal morphine. J. Control. Release 344, 214–224 (2022).

    CAS  PubMed  Google Scholar 

  186. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Castle, M. J., Cheng, Y., Asokan, A. & Tuszynski, M. H. Physical positioning markedly enhances brain transduction after intrathecal AAV9 infusion. Sci. Adv. 4, eaau9859 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Bishop, K. M. Progress and promise of antisense oligonucleotide therapeutics for central nervous system diseases. Neuropharmacology 120, 56–62 (2017).

    CAS  PubMed  Google Scholar 

  189. Geary, R. S., Norris, D., Yu, R. & Bennett, C. F. Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87, 46–51 (2015).

    CAS  PubMed  Google Scholar 

  190. Hablitz, L. M. et al. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 11, 4411 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Lancel, M. Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 22, 33–42 (1999).

    CAS  PubMed  Google Scholar 

  192. Tapiainen, V. et al. The risk of Alzheimer’s disease associated with benzodiazepines and related drugs: a nested case–control study. Acta Psychiatr. Scand. 138, 91–100 (2018).

    CAS  PubMed  Google Scholar 

  193. Gomm, W. et al. Regular benzodiazepine and Z-substance use and risk of dementia: an analysis of German claims data. J. Alzheimers Dis. 54, 801–808 (2016).

    CAS  PubMed  Google Scholar 

  194. Jiang, Q. et al. Impairment of the glymphatic system after diabetes. J. Cereb. Blood Flow Metab. 37, 1326–1337 (2017).

    PubMed  Google Scholar 

  195. Strachan, M. W., Reynolds, R. M., Marioni, R. E. & Price, J. F. Cognitive function, dementia and type 2 diabetes mellitus in the elderly. Nat. Rev. Endocrinol. 7, 108–114 (2011).

    CAS  PubMed  Google Scholar 

  196. Zhang, F. et al. Rapid eye movement sleep behavior disorder and neurodegenerative diseases: an update. Aging Dis. 11, 315–326 (2020).

    PubMed  PubMed Central  Google Scholar 

  197. Qiu, C., Winblad, B. & Fratiglioni, L. The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol. 4, 487–499 (2005).

    PubMed  Google Scholar 

  198. Avolio, A. et al. Cerebral haemodynamics: effects of systemic arterial pulsatile function and hypertension. Curr. Hypertens. Rep. 20, 20 (2018).

    PubMed  Google Scholar 

  199. Kernan, W. N. et al. Guidelines for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 45, 2160–2236 (2014).

    PubMed  Google Scholar 

  200. Murlidharan, G., Crowther, A., Reardon, R. A., Song, J. & Asokan, A. Glymphatic fluid transport controls paravascular clearance of AAV vectors from the brain. JCI Insight 1, e88034 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Giannetto, M. et al. Biological sex does not predict glymphatic influx in healthy young, middle aged or old mice. Sci. Rep. 10, 16073 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Rajna, Z. et al. Cardiovascular brain impulses in Alzheimer’s disease. Brain 144, 2214–2226 (2021).

    PubMed  PubMed Central  Google Scholar 

  203. Thorne, R. G. & Frey, W. H. II Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin. Pharmacokinet. 40, 907–946 (2001).

    CAS  PubMed  Google Scholar 

  204. Yaksh, T. L., Fisher, C. J., Hockman, T. M. & Wiese, A. J. Current and future issues in the development of spinal agents for the management of pain. Curr. Neuropharmacol. 15, 232–259 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Sweeney, A. M. et al. In vivo imaging of cerebrospinal fluid transport through the intact mouse skull using fluorescence macroscopy. J. Vis. Exp. 149, e59774 (2019).

    Google Scholar 

  207. Benveniste, H. et al. Glymphatic cerebrospinal fluid and solute transport quantified by MRI and PET imaging. Neuroscience 474, 63–79 (2020).

    PubMed  Google Scholar 

  208. Stanton, E. H. et al. Mapping of CSF transport using high spatiotemporal resolution dynamic contrast-enhanced MRI in mice: effect of anesthesia. Magn. Reson. Med. 85, 3326–3342 (2021).

    CAS  PubMed  Google Scholar 

  209. Harrison, I. F. et al. Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. eLife 7, e34028 (2018).

    PubMed  PubMed Central  Google Scholar 

  210. Hauglund, N. L., Kusk, P., Kornum, B. R. & Nedergaard, M. Meningeal lymphangiogenesis and enhanced glymphatic activity in mice with chronically implanted EEG electrodes. J. Neurosci. 40, 2371–2380 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Bèchet, N. B. et al. Light sheet fluorescence microscopy of optically cleared brains for studying the glymphatic system. J. Cereb. Blood Flow Metab. 40, 1975–1986 (2020).

    PubMed  PubMed Central  Google Scholar 

  212. Cai, R. et al. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat. Neurosci. 22, 317–327 (2019).

    CAS  PubMed  Google Scholar 

  213. Kananen, J. et al. Altered physiological brain variation in drug-resistant epilepsy. Brain Behav. 8, e01090 (2018).

    PubMed  PubMed Central  Google Scholar 

  214. Joseph, C. R., Benhatzel, C. M., Stern, L. J., Hopper, O. M. & Lockwood, M. D. Pilot study utilizing MRI 3D TGSE PASL (arterial spin labeling) differentiating clearance rates of labeled protons in the CNS of patients with early Alzheimer disease from normal subjects. MAGMA 33, 559–568 (2020).

    CAS  PubMed  Google Scholar 

  215. Nakamura, K., Brown, R. A., Narayanan, S., Collins, D. L. & Arnold, D. L. Diurnal fluctuations in brain volume: statistical analyses of MRI from large populations. Neuroimage 118, 126–132 (2015).

    PubMed  Google Scholar 

  216. Eide, P. K. & Ringstad, G. In vivo imaging of molecular clearance from human entorhinal cortex: a possible method for preclinical testing of dementia. Gerontol. Geriatr. Med. 5, 2333721419889739 (2019).

    PubMed  PubMed Central  Google Scholar 

  217. Naganawa, S. et al. Relationship between parasagittal perivenous cysts and leakage of gadolinium-based contrast agents into the subarachnoid space around the cortical veins after intravenous administration. Magn. Reson. Med. Sci. 20, 245–252 (2020).

    PubMed  PubMed Central  Google Scholar 

  218. Dyke, J. P., Xu, H. S., Verma, A., Voss, H. U. & Chazen, J. L. MRI characterization of early CNS transport kinetics post intrathecal gadolinium injection: trends of subarachnoid and parenchymal distribution in healthy volunteers. Clin. Imaging 68, 1–6 (2020).

    PubMed  Google Scholar 

  219. Ohashi, T., Naganawa, S., Iwata, S. & Kuno, K. Age-related changes in the distribution of intravenously administered gadolinium-based contrast agents leaked into the cerebrospinal fluid in patients with suspected endolymphatic hydrops. Jpn. J. Radiol. 39, 433–441 (2021).

    CAS  PubMed  Google Scholar 

  220. Lipsman, N. et al. Blood–brain barrier opening in Alzheimer’s disease using MR-guided focused ultrasound. Nat. Commun. 9, 2336 (2018).

    PubMed  PubMed Central  Google Scholar 

  221. Verma, A. et al. Intrathecal 99mTc-DTPA imaging of molecular passage from lumbar cerebrospinal fluid to brain and periphery in humans. Alzheimers Dement. 12, e12030 (2020).

    Google Scholar 

  222. Tithof, J., Kelley, D. H., Mestre, H., Nedergaard, M. & Thomas, J. H. Hydraulic resistance of periarterial spaces in the brain. Fluids Barriers CNS 16, 19 (2019).

    PubMed  PubMed Central  Google Scholar 

  223. Nedergaard, M. Neuroscience. Garbage truck of the brain. Science 340, 1529–1530 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Goodman, J. R. & Iliff, J. J. Vasomotor influences on glymphatic–lymphatic coupling and solute trafficking in the central nervous system. J. Cereb. Blood Flow Metab. 40, 1724–1734 (2019).

    PubMed  PubMed Central  Google Scholar 

  225. Cheng, K. P. et al. Clinically-derived vagus nerve stimulation enhances cerebrospinal fluid penetrance. Brain Stimul. 13, 1024–1030 (2020).

    PubMed  Google Scholar 

  226. Lochhead, J. J. & Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 64, 614–628 (2012).

    CAS  PubMed  Google Scholar 

  227. Mehta, A. M., Sonabend, A. M. & Bruce, J. N. Convection-enhanced delivery. Neurotherapeutics 14, 358–371 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Smith, A. J. & Verkman, A. S. The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J. 32, 543–551 (2018).

    CAS  PubMed  Google Scholar 

  229. Abbott, N. J., Pizzo, M. E., Preston, J. E., Janigro, D. & Thorne, R. G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol. 135, 387–407 (2018).

    CAS  PubMed  Google Scholar 

  230. Hladky, S. B. & Barrand, M. A. The glymphatic hypothesis: the theory and the evidence. Fluids Barriers CNS 19, 9 (2022).

    PubMed  PubMed Central  Google Scholar 

  231. Patlak, C. S. & Fenstermacher, J. D. Measurements of dog blood–brain transfer constants by ventriculocisternal perfusion. Am. J. Physiol. 229, 877–884 (1975).

    CAS  PubMed  Google Scholar 

  232. Syková, E. & Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008).

    PubMed  Google Scholar 

  233. Nicholson, C. & Hrabětová, S. Brain extracellular space: the final frontier of neuroscience. Biophys. J. 113, 2133–2142 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Iliff, J. & Simon, M. CrossTalk proposal: the glymphatic system supports convective exchange of cerebrospinal fluid and brain interstitial fluid that is mediated by perivascular aquaporin-4. J. Physiol. 597, 4417–4419 (2019).

    CAS  PubMed  Google Scholar 

  235. Asgari, M., de Zélicourt, D. & Kurtcuoglu, V. Glymphatic solute transport does not require bulk flow. Sci. Rep. 6, 38635 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Jin, B. J., Smith, A. J. & Verkman, A. S. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism. J. Gen. Physiol. 148, 489–501 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc. Natl Acad. Sci. USA 114, 9894–9899 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Faghih, M. M. & Sharp, M. K. Is bulk flow plausible in perivascular, paravascular and paravenous channels? Fluids Barriers CNS 15, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  239. Ray, L., Iliff, J. J. & Heys, J. J. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS 16, 6 (2019).

    PubMed  PubMed Central  Google Scholar 

  240. Koundal, S. et al. Optimal mass transport with lagrangian workflow reveals advective and diffusion driven solute transport in the glymphatic system. Sci. Rep. 10, 1990 (2020).

    PubMed  Google Scholar 

  241. Thomas, J. H. Fluid dynamics of cerebrospinal fluid flow in perivascular spaces. J. R. Soc. Interface 16, 20190572 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Hammarlund-Udenaes, M., Fridén, M., Syvänen, S. & Gupta, A. On the rate and extent of drug delivery to the brain. Pharm. Res. 25, 1737–1750 (2008).

    CAS  PubMed  Google Scholar 

  243. Smith, A. J., Akdemir, G., Wadhwa, M., Song, D. & Verkman, A. S. Application of fluorescent dextrans to the brain surface under constant pressure reveals AQP4-independent solute uptake. J. Gen. Physiol. 153, e202112898 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Mestre, H. et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. eLife 7, e40070 (2018).

    PubMed  PubMed Central  Google Scholar 

  245. Xavier, A. L. R. et al. Cannula implantation into the cisterna magna of rodents. J. Vis. Exp. 135, e57378 (2018).

    Google Scholar 

  246. Ramos, M. et al. Cisterna magna injection in rats to study glymphatic function. Methods Mol. Biol. 1938, 97–104 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Raghunandan, A. et al. Bulk flow of cerebrospinal fluid observed in periarterial spaces is not an artifact of injection. eLife 10, e65958 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Cumming, E. Kalso, V. Kiviniemi and P. Rauhala for their helpful feedback on the manuscript. They thank D. Xue for the submitted versions of the graphical illustrations. Funding was received from the Novo Nordisk Foundation, the Lundbeck Foundation, the Paulo Foundation, University of Helsinki research funds, The Acta Anaesthesiologica Scandinavica Foundation and European Union’s Horizon 2020 research and innovation programme (grant agreement 742112 and the Marie Sklodowska-Curie grant agreement GlymPharma No 798944).

Author information

Authors and Affiliations

Authors

Contributions

T.O.L. and M.N. had the original idea, and T.J.L. wrote the first draft of the manuscript. T.J.L. and T.O.L. edited the manuscript. All authors commented on and approved the final version of the manuscript.

Corresponding author

Correspondence to Maiken Nedergaard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Per Kristian Eide, Roxana Carare and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohela, T.J., Lilius, T.O. & Nedergaard, M. The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 21, 763–779 (2022). https://doi.org/10.1038/s41573-022-00500-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-022-00500-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research