Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cluster headache pathophysiology — insights from current and emerging treatments

Abstract

Cluster headache is a debilitating primary headache disorder that affects approximately 0.1% of the population worldwide. Cluster headache attacks involve severe unilateral pain in the trigeminal distribution together with ipsilateral cranial autonomic features and a sense of agitation. Acute treatments are available and are effective in just over half of the patients. Until recently, preventive medications were borrowed from non-headache indications, so management of cluster headache is challenging. However, as our understanding of cluster headache pathophysiology has evolved on the basis of key bench and neuroimaging studies, crucial neuropeptides and brain structures have been identified as emerging treatment targets. In this Review, we provide an overview of what is known about the pathophysiology of cluster headache and discuss the existing treatment options and their mechanisms of action. Existing acute treatments include triptans and high-flow oxygen, interim treatment options include corticosteroids in oral form or for greater occipital nerve block, and preventive treatments include verapamil, lithium, melatonin and topiramate. We also consider emerging treatment options, including calcitonin gene-related peptide antibodies, non-invasive vagus nerve stimulation, sphenopalatine ganglion stimulation and somatostatin receptor agonists, discuss how evidence from trials of these emerging treatments provides insights into the pathophysiology of cluster headache and highlight areas for future research.

Key points

  • Cluster headache is a debilitating primary headache disorder with two subtypes — episodic and chronic — that are currently defined according to a temporal cut-off.

  • Cluster headache pathogenesis involves complex interactions between the trigeminovascular pathway, trigeminal autonomic reflex, hypothalamus and the neuropeptides calcitonin gene-related peptide and pituitary adenylate cyclase-activating polypeptide 38.

  • Emerging therapies in cluster headache include calcitonin gene-related peptide monoclonal antibodies, non-invasive vagus nerve stimulation and sphenopalatine ganglion stimulation.

  • Clinical studies of these emerging treatments have highlighted differences between episodic and chronic cluster headache that imply different underlying mechanisms that could be used to distinguish them.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The three key components of cluster headache pathophysiology.

Similar content being viewed by others

Michel D. Ferrari, Peter J. Goadsby, … David W. Dodick

References

  1. Russell, M. B. Epidemiology and genetics of cluster headache. Lancet Neurol. 3, 279–283 (2004).

    Article  PubMed  Google Scholar 

  2. Wallin, M. T. et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 269–285 (2019).

    Article  Google Scholar 

  3. Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition. Cephalalgia 38, 1–211 (2018).

    Article  Google Scholar 

  4. Burish, M. J., Pearson, S. M., Shapiro, R. E., Zhang, W. & Schor, L. I. Cluster headache is one of the most intensely painful human conditions: results from the International Cluster Headache Questionnaire. Headache 61, 117–124 (2021).

    Article  PubMed  Google Scholar 

  5. Goadsby, P. J. et al. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97, 553–622 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. May, A. & Goadsby, P. J. The trigeminovascular system in humans: pathophysiologic implications for primary headache syndromes of the neural influences on the cerebral circulation. J. Cereb. Blood Flow. Metab. 19, 115–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Goadsby, P. J. & Lipton, R. B. A review of paroxysmal hemicranias, SUNCT syndrome and other short-lasting headaches with autonomic feature, including new cases. Brain 120, 193–209 (1997). This review was the first to coin the term trigeminal autonomic cephalalgias to describe primary unilateral headaches with ipsilateral cranial autonomic symptoms.

    Article  PubMed  Google Scholar 

  8. Hoffmann, J. & May, A. Diagnosis, pathophysiology, and management of cluster headache. Lancet Neurol. 17, 75–83 (2018).

    Article  PubMed  Google Scholar 

  9. O’Connor, T. P. & van der Kooy, D. Pattern of intracranial and extracranial projections of trigeminal ganglion cells. J. Neurosci. 6, 2200–2207 (1986).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Feindel, W., Penfield, W. & McNaughton, F. The tentorial nerves and localization of intracranial pain in man. Neurology 10, 555–563 (1960).

    Article  CAS  PubMed  Google Scholar 

  11. McNaughton, F. & Feindel, W. Innervation of intracranial structures: a reappraisal in Physiological Aspects of Clinical Neurology (ed. Rose, F. C.) 279–293 (Blackwell, 1977).

  12. Fontaine, D. et al. Dural and pial pain-sensitive structures in humans: new inputs from awake craniotomies. Brain 141, 1040–1048 (2018).

    Article  PubMed  Google Scholar 

  13. Goadsby, P. J. & Hoskin, K. L. The distribution of trigeminovascular afferents in the nonhuman primate brain Macaca nemestrina: a c-fos immunocytochemical study. J. Anat. 190, 367–375 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hoskin, K. L., Zagami, A. S. & Goadsby, P. J. Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: a comparative study of monkey and cat. J. Anat. 194, 579–588 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Arbab, M. A., Wiklund, L. & Svendgaard, N. A. Origin and distribution of cerebral vascular innervation from superior cervical, trigeminal and spinal ganglia investigated with retrograde and anterograde WGA-HRP tracing in the rat. Neuroscience 19, 695–708 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. Arbab, M. A., Delgado, T., Wiklund, L. & Svendgaard, N. A. Brain stem terminations of the trigeminal and upper spinal ganglia innervation of the cerebrovascular system: WGA-HRP transganglionic study. J. Cereb. Blood Flow. Metab. 8, 54–63 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Zagami, A. S. & Lambert, G. A. Stimulation of cranial vessels excites nociceptive neurones in several thalamic nuclei of the cat. Exp. Brain Res. 81, 552–566 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Zagami, A. S. & Goadsby, P. J. Stimulation of the superior sagittal sinus increases metabolic activity in cat thalamus in New Advances in Headache Research: 2 (ed. Rose, F. C.) 169–171 (Smith-Gordon, 1991).

  19. O’Connor, T. P. & van der Kooy, D. Enrichment of a vasoactive neuropeptide (calcitonin gene related peptide) in the trigeminal sensory projection to the intracranial arteries. J. Neurosci. 8, 2468–2476 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zagami, A. S., Goadsby, P. J. & Edvinsson, L. Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides 16, 69–75 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Liu-Chen, L. Y., Gillespie, S. A., Norregaard, T. V. & Moskowitz, M. A. Co-localization of retrogradely transported wheat germ agglutinin and the putative neurotransmitter substance P within trigeminal ganglion cells projecting to cat middle cerebral artery. J. Comp. Neurol. 225, 187–192 (1984).

    Article  CAS  PubMed  Google Scholar 

  22. Marfurt, C. F. The central projections of trigeminal primary afferent neurons in the cat as determined by the tranganglionic transport of horseradish peroxidase. J. Comp. Neurol. 203, 785–798 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. Penfield, W. & McNaughton, F. Dural headache and innervation of the dura mater. Arch. Neurol. Psychiatry 44, 43–75 (1940).

    Article  Google Scholar 

  24. Ray, B. S. & Wolff, H. G. Experimental studies on headache: pain-sensitive structures of the head and their significance in headache. Arch. Surg. 41, 813–856 (1940).

    Article  Google Scholar 

  25. Johnston, M. M., Jordan, S. E. & Charles, A. C. Pain referral patterns of the C1 to C3 nerves: implications for headache disorders. Ann. Neurol. 74, 145–148 (2013).

    Article  PubMed  Google Scholar 

  26. Spencer, S. E., Sawyer, W. B., Wada, H., Platt, K. B. & Loewy, A. D. CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res. 534, 149–169 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Knight, Y. E. et al. Patterns of fos expression in the rostral medulla and caudal pons evoked by noxious craniovascular stimulation and periaqueductal gray stimulation in the cat. Brain Res. 1045, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Nakai, M., Tamaki, K., Ogata, J., Matsui, Y. & Maeda, M. Parasympathetic cerebrovasodilator center of the facial nerve. Circ. Res. 72, 470–475 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Goadsby, P. J., Lambert, G. A. & Lance, J. W. Effects of locus coeruleus stimulation on carotid vascular resistance in the cat. Brain Res. 278, 175–183 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Goadsby, P. J., Lambert, G. A. & Lance, J. W. The peripheral pathway for extracranial vasodilatation in the cat. J. Auton. Nerv. Syst. 10, 145–155 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Goadsby, P. J. Sphenopalatine ganglion stimulation increases regional cerebral blood flow independent of glucose utilization in the cat. Brain Res. 506, 145–148 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Goadsby, P. J., Uddman, R. & Edvinsson, L. Cerebral vasodilatation in the cat involves nitric oxide from parasympathetic nerves. Brain Res. 707, 110–118 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Jansen-Olesen, I., Goadsby, P. J., Uddman, R. & Edvinsson, L. Vasoactive intestinal peptide (VIP) like peptides in the cerebral circulation of the cat. J. Auton. Nerv. Syst. 49 (Suppl.), S97–S103 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Goadsby, P. J. & Shelley, S. High-frequency stimulation of the facial nerve results in local cortical release of vasoactive intestinal polypeptide in the anesthetised cat. Neurosci. Lett. 112, 282–289 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Csati, A., Tajti, J., Tuka, B., Edvinsson, L. & Warfvinge, K. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion – interaction with the sensory system. Brain Res. 1435, 29–39 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Uddman, R., Goadsby, P. J., Jansen, I. & Edvinsson, L. PACAP, a VIP-like peptide: immunohistochemical localization and effect upon cat pial arteries and cerebral blood flow. J. Cereb. Blood Flow. Metab. 13, 291–297 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Möller, M., Haji, A. A., Hoffmann, J. & May, A. Peripheral provocation of cranial autonomic symptoms is not sufficient to trigger cluster headache attacks. Cephalalgia 38, 1498–1502 (2018).

    Article  PubMed  Google Scholar 

  38. Guo, S. et al. Cranial parasympathetic activation induces autonomic symptoms but no cluster headache attacks. Cephalalgia 38, 1418–1428 (2018).

    Article  PubMed  Google Scholar 

  39. Brain, S. D., Williams, T. J., Tippins, J. R., Morris, H. R. & MacIntyre, I. Calcitonin gene-related peptide is a potent vasodilator. Nature 313, 54–56 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. Storer, R. J., Akerman, S. & Goadsby, P. J. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br. J. Pharmacol. 142, 1171–1181 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Russell, F. A., King, R., Smillie, S. J., Kodji, X. & Brain, S. D. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. 94, 1099–1142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Edvinsson, L., Mulder, H., Goadsby, P. J. & Uddman, R. Calcitonin gene-related peptide and nitric oxide in the trigeminal ganglion: cerebral vasodilatation from trigeminal nerve stimulation involves mainly calcitonin gene-related peptide. J. Auton. Nerv. Syst. 70, 15–22 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Eftekhari, S. & Edvinsson, L. Calcitonin gene-related peptide (CGRP) and its receptor components in human and rat spinal trigeminal nucleus and spinal cord at C1-level. BMC Neurosci. 12, 112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Russo, A. F. Calcitonin gene-related peptide (CGRP): a new target for migraine. Annu. Rev. Pharmacol. Toxicol. 55, 533–552 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Edvinsson, L., Haanes, K. A., Warfvinge, K. & Krause, D. N. CGRP as the target of new migraine therapies — successful translation from bench to clinic. Nat. Rev. Neurol. 14, 338–350 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Goadsby, P. J. & Edvinsson, L. Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain 117, 427–434 (1994). This seminal study was the first to associate CGRP with the pathogenesis of cluster headache by showing that CGRP levels increase in the serum during a cluster headache attack and normalize after treatment and resolution of the attack with sumatriptan.

    Article  PubMed  Google Scholar 

  48. Fanciullacci, M., Alessandri, M., Figini, M., Geppetti, P. & Michelacci, S. Increase in plasma calcitonin gene-related peptide from the extracerebral circulation during nitroglycerin-induced cluster headache attack. Pain 60, 119–123 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Fanciullacci, M., Alessandri, M., Sicuteri, R. & Marabini, S. Responsiveness of the trigeminovascular system to nitroglycerine in cluster headache patients. Brain 120, 283–288 (1997).

    Article  PubMed  Google Scholar 

  50. Vollesen, A. L. H. et al. Effect of infusion of calcitonin gene-related peptide on cluster headache attacks: a randomized clinical trial. JAMA Neurol. 75, 1187–1197 (2018). This study demonstrated that CGRP induces attacks in patients with episodic cluster headache when in bout and in patients with chronic cluster headache with frequent attacks in the preceding 30 days, but not in patients with episodic cluster headache out of bout.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Snoer, A. et al. Calcitonin-gene related peptide and disease activity in cluster headache. Cephalalgia 39, 575–584 (2019).

    Article  PubMed  Google Scholar 

  52. Miyata, A. et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567–574 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Steinberg, A., Frederiksen, S. D., Blixt, F. W., Warfvinge, K. & Edvinsson, L. Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets. J. Headache Pain. 17, 78 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Laburthe, M., Couvineau, A. & Tan, V. Class II G protein-coupled receptors for VIP and PACAP: structure, models of activation and pharmacology. Peptides 28, 1631–1639 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Dickson, L. & Finlayson, K. VPAC and PAC receptors: from ligands to function. Pharmacol. Ther. 121, 294–316 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Jansen-Olesen, I. et al. PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor. Neuropeptides 48, 53–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Hannibal, J. et al. Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: a potential daytime regulator of the biological clock. J. Neurosci. 17, 2637–2644 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tuka, B. et al. Release of PACAP-38 in episodic cluster headache patients – an exploratory study. J. Headache Pain 17, 69 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Settle, M. The hypothalamus. Neonatal Netw. 19, 9–14 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Buijs, R. M. The autonomic nervous system: a balancing act. Handb. Clin. Neurol. 117, 1–11 (2013).

    Article  PubMed  Google Scholar 

  62. Bartsch, T., Levy, M. J., Knight, Y. E. & Goadsby, P. J. Inhibition of nociceptive dural input in the trigeminal nucleus caudalis by somatostatin receptor blockade in the posterior hypothalamus. Pain 117, 30–39 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Holland, P. & Goadsby, P. J. The hypothalamic orexinergic system: pain and primary headaches. Headache 47, 951–962 (2007).

    Article  PubMed  Google Scholar 

  64. Malick, A., Strassman, R. M. & Burstein, R. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J. Neurophysiol. 84, 2078–2112 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Kunkle, E. C., Pfieffer J, J. B., Wilhoit, W. M. & Hamrick J, L. W. Recurrent brief headache in “cluster” pattern. Trans. Am. Neurol. Assoc. 27, 240–243 (1952). The first description of patients with cluster headache having bouts that cluster through the year.

    Google Scholar 

  66. Kudrow, L. The cyclic relationship of natural illumination to cluster period frequency. Cephalalgia 7 (Suppl. 6), 76–78 (1987). This is the first study to show the relationship between photoperiodism and bout occurrence.

    Article  PubMed  Google Scholar 

  67. Waldenlind, E., Gustafsson, S. A., Ekbom, K. & Wetterberg, L. Circadian secretion of cortisol and melatonin in cluster headache during active cluster periods and remission. J. Neurol. Neurosurg. Psychiatry 50, 207–213 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leone, M. & Bussone, G. A review of hormonal findings in cluster headache. Evidence for hypothalamic involvement. Cephalalgia 13, 309–317 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Kudrow, L. Plasma testosterone levels in cluster headache preliminary results. Headache 16, 28–31 (1976).

    Article  CAS  PubMed  Google Scholar 

  70. Holland, P. R. & Goadsby, P. J. Cluster headache, hypothalamus, and orexin. Curr. Pain. Headache Rep. 13, 147–154 (2009).

    Article  PubMed  Google Scholar 

  71. May, A., Bahra, A., Büchel, C., Frackowiak, R. S. J. & Goadsby, P. J. Hypothalamic activation in cluster headache attacks. Lancet 352, 275–278 (1998). This seminal study presents neuroimaging findings of ipsilateral hypothalamic activation in nitroglycerin induced cluster headache attacks.

    Article  CAS  PubMed  Google Scholar 

  72. Robert, C. et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J. Neurosci. 33, 8827–8840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matharu, M. S., Levy, M. J., Meeran, K. & Goadsby, P. J. Subcutaneous octreotide in cluster headache: randomized placebo-controlled double-blind crossover study. Ann. Neurol. 56, 488–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Hosoya, Y., Matsushita, M. & Sugiura, Y. A direct hypothalamic projection to the superior salivatory nucleus neurons in the rat. A study using anterograde autoradiographic and retrograde HRP methods. Brain Res. 266, 329–333 (1983).

    Article  CAS  PubMed  Google Scholar 

  75. Hosoya, Y., Sugiura, Y., Ito, R. & Kohno, K. Descending projections from the hypothalamic paraventricular nucleus to the A5 area, including the superior salivatory nucleus, in the rat. Exp. Brain Res. 82, 513–518 (1990).

    Article  CAS  PubMed  Google Scholar 

  76. Li, C. et al. Projections from the hypothalamic paraventricular nucleus and the nucleus of the solitary tract to prechoroidal neurons in the superior salivatory nucleus: pathways controlling rodent choroidal blood flow. Brain Res. 1358, 123–139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Akerman, S., Holland, P. R., Lasalandra, M. P. & Goadsby, P. J. Oxygen inhibits neuronal activation in the trigeminocervical complex after stimulation of trigeminal autonomic reflex, but not during direct dural activation of trigeminal afferents. Headache. 49, 1131–1143 (2009). This important animal study showed that oxygen acts on the trigeminal autonomic reflex rather than the trigeminovascular system.

    Article  PubMed  Google Scholar 

  78. Ibuka, N. & Kawamura, H. Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res. 96, 76–81 (1975).

    Article  CAS  PubMed  Google Scholar 

  79. Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  80. Wurtman, R. J., Axelrod, J. & Phillips, L. S. Melatonin synthesis in the pineal gland: control by light. Science 142, 1071–1073 (1963).

    Article  CAS  PubMed  Google Scholar 

  81. Chazot, G. et al. A chronobiological study of melatonin, cortisol growth hormone and prolactin secretion in cluster headache. Cephalalgia 4, 213–220 (1984).

    Article  CAS  PubMed  Google Scholar 

  82. Leone, M. et al. Twenty-four-hour melatonin and cortisol plasma levels in relation to timing of cluster headache. Cephalalgia 15, 224–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Waldenlind, E. et al. Lowered circannual urinary melatonin concentrations in episodic cluster headache. Cephalalgia 14, 199–204 (1994).

    Article  CAS  PubMed  Google Scholar 

  84. Coomans, C. P., Ramkisoensing, A. & Meijer, J. H. The suprachiasmatic nuclei as a seasonal clock. Front. Neuroendocrinol. 37, 29–42 (2015).

    Article  PubMed  Google Scholar 

  85. Hofman, M. A., Purba, J. S. & Swaab, D. F. Annual variations in the vasopressin neuron population of the human suprachiasmatic nucleus. Neuroscience 53, 1103–1112 (1993).

    Article  CAS  PubMed  Google Scholar 

  86. Rozen, T. D. & Fishman, R. S. Cluster headache in the United States of America: demographics, clinical characteristics, triggers, suicidality, and personal burden. Headache 52, 99–113 (2012).

    Article  PubMed  Google Scholar 

  87. Manzoni, G. C. et al. Cluster headache–clinical findings in 180 patients. Cephalalgia 3, 21–30 (1983).

    Article  CAS  PubMed  Google Scholar 

  88. Gaul, C. et al. Differences in clinical characteristics and frequency of accompanying migraine features in episodic and chronic cluster headache. Cephalalgia 32, 571–577 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Barloese, M. et al. Sleep and chronobiology in cluster headache. Cephalalgia 35, 969–978 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Lin, K. H. et al. Cluster headache in the Taiwanese – a clinic-based study. Cephalalgia 24, 631–638 (2004).

    Article  PubMed  Google Scholar 

  91. Ofte, H. K., Berg, D. H., Bekkelund, S. I. & Alstadhaug, K. B. Insomnia and periodicity of headache in an arctic cluster headache population. Headache 53, 1602–1612 (2013).

    Article  PubMed  Google Scholar 

  92. May, A. et al. Experimental cranial pain elicited by capsaicin: a PET study. Pain 74, 61–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Wei, D. Y., Khalil, M. & Goadsby, P. J. Managing cluster headache. Pract. Neurol. 19, 521–528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. May, A. et al. Cluster headache. Nat. reviews. Dis. Prim. 4, 18006 (2018).

    Article  Google Scholar 

  95. The Sumatriptan Cluster Headache Study Group. Treatment of acute cluster headache with sumatriptan. N. Engl. J. Med. 325, 322–326 (1991).

    Article  Google Scholar 

  96. Cohen, A. S., Burns, B. & Goadsby, P. J. High-flow oxygen for treatment of cluster headache. JAMA 302, 2451–2457 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Silberstein, S. D. et al. Non-invasive vagus nerve stimulation for the ACute treatment of cluster headache: findings from the randomized, double-blind, sham-controlled ACT1 study. Headache 56, 1317–1332 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Goadsby, P. J. et al. Non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: A randomized, double-blind, sham-controlled ACT2 study. Cephalalgia 38, 959–969 (2018).

    Article  PubMed  Google Scholar 

  99. van Vliet, J. A. et al. Intranasal sumatriptan in cluster headache: randomized placebo-controlled double-blind study. Neurology 60, 630–633 (2003).

    Article  PubMed  Google Scholar 

  100. Cittadini, E. et al. Effectiveness of intranasal zolmitriptan in acute cluster headache: a randomized, placebo-controlled, double-blind crossover study. Arch. Neurol. 63, 1537–1542 (2006).

    Article  PubMed  Google Scholar 

  101. Rapoport, A. M. et al. Zolmitriptan nasal spray in the acute treatment of cluster headache: a double-blind study. Neurology 69, 821–826 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Ekbom, K. et al. Subcutaneous sumatriptan in the acute treatment of cluster headache: a dose comparison study. The Sumatriptan Cluster Headache Study Group. Acta Neurol. Scand. 88, 63–69 (1993).

    Article  CAS  PubMed  Google Scholar 

  103. Ekbom, K. et al. Cluster headache attacks treated for up to three months with subcutaneous sumatriptan (6 mg). Sumatriptan Cluster Headache Long-term Study Group. Cephalalgia 15, 230–236 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Göbel, H., Lindner, V., Heinze, A., Ribbat, M. & Deuschl, G. Acute therapy for cluster headache with sumatriptan: findings of a one-year long-term study. Neurology 51, 908–911 (1998).

    Article  PubMed  Google Scholar 

  105. Paemeleire, K., Bahra, A., Evers, S., Matharu, M. S. & Goadsby, P. J. Medication-overuse headache in patients with cluster headache. Neurology 67, 109–113 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Diener, H. C. et al. Pathophysiology, prevention, and treatment of medication overuse headache. Lancet Neurol. 18, 891–902 (2019).

    Article  PubMed  Google Scholar 

  107. Bahra, A. et al. Oral zolmitriptan is effective in the acute treatment of cluster headache. Neurology 54, 1832–1839 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Goadsby, P. J. The pharmacology of headache. Prog. Neurobiol. 62, 509–525 (2000).

    Article  CAS  PubMed  Google Scholar 

  109. Kaube, H., Hoskin, K. L. & Goadsby, P. J. Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption. Br. J. Pharmacol. 109, 788–792 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Levy, D., Jakubowski, M. & Burstein, R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists. Proc. Natl Acad. Sci. USA 101, 4274–4279 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Goadsby, P. J. & Edvinsson, L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann. Neurol. 33, 48–56 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Shields, K. G. & Goadsby, P. J. Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol. Dis. 23, 491–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Deen, M. et al. Association between sumatriptan treatment during a migraine attack and central 5-HT1B receptor binding. JAMA Neurol. 76, 834–840 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Muzzi, M. et al. Ultra-rapid brain uptake of subcutaneous sumatriptan in the rat: implication for cluster headache treatment. Cephalalgia 40, 330–336 (2020).

    Article  PubMed  Google Scholar 

  115. Monstad, I. et al. Preemptive oral treatment with sumatriptan during a cluster period. Headache 35, 607–613 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Horton, B. T. Histaminic cephalgia. J. Lancet 72, 92–98 (1952).

    CAS  PubMed  Google Scholar 

  117. Kudrow, L. Response of cluster headache attacks to oxygen inhalation. Headache 21, 1–4 (1981).

    Article  CAS  PubMed  Google Scholar 

  118. Fogan, L. Treatment of cluster headache. A double-blind comparison of oxygen v air inhalation. Arch. Neurol. 42, 362–363 (1985).

    Article  CAS  PubMed  Google Scholar 

  119. Petersen, A. S., Barloese, M. C., Lund, N. L. & Jensen, R. H. Oxygen therapy for cluster headache. A mask comparison trial. A single-blinded, placebo-controlled, crossover study. Cephalalgia 37, 214–224 (2016).

    Article  PubMed  Google Scholar 

  120. Mirzai, R., Chang, C., Greenspan, A. & Gershwin, M. E. The pathogenesis of osteonecrosis and the relationships to corticosteroids. J. Asthma 36, 77–95 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Jammes, J. L. The treatment of cluster headaches with prednisone. Dis. Nerv. Syst. 36, 375–376 (1975).

    CAS  PubMed  Google Scholar 

  122. Couch, J. R. Jr. & Ziegler, D. K. Prednisone therapy for cluster headache. Headache 18, 219–221 (1978).

    Article  PubMed  Google Scholar 

  123. Holle, D. et al. Study protocol of Prednisone in episodic Cluster Headache (PredCH): a randomized, double-blind, placebo-controlled parallel group trial to evaluate the efficacy and safety of oral prednisone as an add-on therapy in the prophylactic treatment of episodic cluster headache with verapamil. BMC Neurol. 13, 99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Obermann, M. & Holle, D. Prednisone in short-term prevention of episodic cluster headache [abstract]. Neurology 94 (Suppl. 15), 4645 (2020).

    Google Scholar 

  125. Neeb, L., Hellen, P., Hoffmann, J., Dirnagl, U. & Reuter, U. Methylprednisolone blocks interleukin 1 beta induced calcitonin gene related peptide release in trigeminal ganglia cells. J. Headache Pain 17, 19 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Neeb, L. et al. Corticosteroids alter CGRP and melatonin release in cluster headache episodes. Cephalalgia 35, 317–326 (2015).

    Article  PubMed  Google Scholar 

  127. Anthony, M. in Migraine: Clinical and Research Advances (ed. Rose F. C.) 169–173 (Karger, 1985).

  128. Ambrosini, A. et al. Suboccipital injection with a mixture of rapid- and long-acting steroids in cluster headache: a double-blind placebo-controlled study. Pain 118, 92–96 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Afridi, S. K., Shields, K. G., Bhola, R. & Goadsby, P. J. Greater occipital nerve injection in primary headache syndromes – prolonged effects from a single injection. Pain 122, 126–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Leroux, E. et al. Suboccipital steroid injections for transitional treatment of patients with more than two cluster headache attacks per day: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 10, 891–897 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Gantenbein, A. R., Lutz, N. J., Riederer, F. & Sándor, P. S. Efficacy and safety of 121 injections of the greater occipital nerve in episodic and chronic cluster headache. Cephalalgia 32, 630–634 (2012).

    Article  PubMed  Google Scholar 

  132. Lambru, G. et al. Greater occipital nerve blocks in chronic cluster headache: a prospective open-label study. Eur. J. Neurol. 21, 338–343 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Gaul, C. et al. Efficacy and safety of a single occipital nerve blockade in episodic and chronic cluster headache: a prospective observational study. Cephalalgia 37, 873–880 (2017).

    Article  PubMed  Google Scholar 

  134. Shields, K. G., Levy, M. J. & Goadsby, P. J. Alopecia and cutaneous atrophy after greater occipital nerve infiltration with corticosteroid. Neurology 63, 2193–2194 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Wei, J. & Robbins, M. S. Greater occipital nerve injection versus oral steroids for short term prophylaxis of cluster headache: a retrospective comparative study. Headache 58, 852–858 (2018).

    Article  PubMed  Google Scholar 

  136. Bartsch, T. & Goadsby, P. J. Stimulation of the greater occipital nerve induces increased central excitability of dural afferent input. Brain 125, 1496–1509 (2002).

    Article  PubMed  Google Scholar 

  137. Goadsby, P. J., Knight, Y. E. & Hoskin, K. L. Stimulation of the greater occipital nerve increases metabolic activity in the trigeminal nucleus caudalis and cervical dorsal horn of the cat. Pain 73, 23–28 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Bartsch, T. & Goadsby, P. J. The trigeminocervical complex and migraine: current concepts and synthesis. Curr. Pain Headache Rep. 7, 371–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  139. Meyer, J. S. & Hardenberg, J. Clinical effectiveness of calcium entry blockers in prophylactic treatment of migraine and cluster headaches. Headache 23, 266–277 (1983).

    Article  CAS  PubMed  Google Scholar 

  140. Jónsdóttir, M., Meyer, J. S. & Rogers, R. L. Efficacy, side effects and tolerance compared during headache treatment with three different calcium blockers. Headache 27, 364–369 (1987).

    Article  PubMed  Google Scholar 

  141. Gabai, I. J. & Spierings, E. L. Prophylactic treatment of cluster headache with verapamil. Headache 29, 167–168 (1989).

    Article  CAS  PubMed  Google Scholar 

  142. Leone, M. et al. Verapamil in the prophylaxis of episodic cluster headache: a double-blind study versus placebo. Neurology 54, 1382–1385 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Bussone, G. et al. Double blind comparison of lithium and verapamil in cluster headache prophylaxis. Headache 30, 411–417 (1990).

    Article  CAS  PubMed  Google Scholar 

  144. Cohen, A. S., Matharu, M. S. & Goadsby, P. J. Electrocardiographic abnormalities in patients with cluster headache on verapamil therapy. Neurology 69, 668–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Blau, J. N. & Engel, H. O. Individualizing treatment with verapamil for cluster headache patients. Headache 44, 1013–1018 (2004).

    Article  PubMed  Google Scholar 

  146. Lanteri-Minet, M., Silhol, F., Piano, V. & Donnet, A. Cardiac safety in cluster headache patients using the very high dose of verapamil (≥720 mg/day). J. Headache Pain 12, 173–176 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Matharu, M. S., van Vliet, J. A., Ferrari, M. D. & Goadsby, P. J. Verapamil induced gingival enlargement in cluster headache. J. Neurol. Neurosurg. Psychiatry 76, 124–127 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dougall, H. T. & McLay, J. A comparative review of the adverse effects of calcium antagonists. Drug Saf. 15, 91–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. King, B. D. et al. Impotence during therapy with verapamil. Arch. Intern. Med. 143, 1248–1249 (1983).

    Article  CAS  PubMed  Google Scholar 

  150. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R. & Fox, A. P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 11, 431–438 (1988).

    Article  CAS  PubMed  Google Scholar 

  151. Westenbroek, R. E. et al. Immunochemical identification and subcellular distribution of the alpha 1A subunits of brain calcium channels. J. Neurosci. 15, 6403–6418 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kim, H. C. & Chung, M. K. Voltage-dependent sodium and calcium currents in acutely isolated adult rat trigeminal root ganglion neurons. J. Neurophysiol. 81, 1123–1134 (1999).

    Article  CAS  PubMed  Google Scholar 

  153. Akerman, S., Williamson, D. J. & Goadsby, P. J. Voltage-dependent calcium channels are involved in neurogenic dural vasodilatation via a presynaptic transmitter release mechanism. Br. J. Pharmacol. 140, 558–566 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lubberink, M. et al. Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[11C]verapamil and PET. J. Cereb. Blood Flow. Metab. 27, 424–433 (2007).

    Article  CAS  PubMed  Google Scholar 

  155. Colwell, C. S. Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur. J. Neurosci. 12, 571–576 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Biel, M., Wahl-Schott, C., Michalakis, S. & Zong, X. Hyperpolarization-activated cation channels: from genes to function. Physiol. Rev. 89, 847–885 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Vila-Pueyo, M., Bojarowska, Z., Goadsby, P. J. & Holland, R. R. Mechanisms of action of verapamil in preclinical model of cluster headache. Cephalalgia 40, 3–17 (2020). This animal study demonstrated the novel mechanism of action of verapamil on hyperpolarization-activated cyclic nucleotide-gated channels.

    Google Scholar 

  158. Ekbom, K. Lithium for cluster headache: review of the literature and preliminary results of long-term treatment. Headache 21, 132–139 (1981).

    Article  CAS  PubMed  Google Scholar 

  159. Steiner, T., Hering, R., Couturier, E., Davies, P. & Whitmarsh, T. Double-blind placebo-controlled trial of lithium in episodic cluster headache. Cephalalgia 17, 673–675 (1997).

    Article  CAS  PubMed  Google Scholar 

  160. Kudrow, L. Lithium prophylaxis for chronic cluster headache. Headache 17, 15–18 (1977).

    Article  CAS  PubMed  Google Scholar 

  161. Becker, W. J. Cluster headache: conventional pharmacological management. Headache 53, 1191–1196 (2013).

    Article  PubMed  Google Scholar 

  162. Ekbom, K. Litium vid kroniska symptom av cluster headache. Opusc. Medica 19, 148–156 (1974).

    Google Scholar 

  163. Fanciullacci, M., Pietrini, U., Boccuni, M., Gatto, G. & Cangi, F. Does lithium balance the neuronal bilateral asymmetries in cluster headache? Cephalalgia 3 (Suppl. 1), 85–87 (1983).

    Article  PubMed  Google Scholar 

  164. Vincent, M. B. Lithium inhibits substance P and vasoactive intestinal peptide-induced relaxations on isolated porcine ophthalmic artery. Headache 32, 335–339 (1992).

    Article  CAS  PubMed  Google Scholar 

  165. Moreira, J. & Geoffroy, P. A. Lithium and bipolar disorder: impacts from molecular to behavioural circadian rhythms. Chronobiol. Int. 33, 351–373 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Chazot, G., Claustrat, B., Brun, J. & Zaidan, R. Effects on the patterns of melatonin and cortisol in cluster headache of a single administration of lithium at 7.00 p.m. daily over one week: a preliminary report. Pharmacopsychiatry 20, 222–223 (1987).

    Article  CAS  PubMed  Google Scholar 

  167. Leone, M. et al. Dexamethasone suppression test, melatonin and TRH-test in cluster headache. Ital. J. Neurol. Sci. 13, 227–232 (1992).

    Article  CAS  PubMed  Google Scholar 

  168. Leone, M. et al. Abnormal 24-hour urinary excretory pattern of 6-sulphatoxymelatonin in both phases of cluster headache. Cephalalgia 18, 664–667 (1998).

    Article  CAS  PubMed  Google Scholar 

  169. Leone, M., D’Amico, D., Moschiano, F., Fraschini, F. & Bussone, G. Melatonin versus placebo in the prophylaxis of cluster headache: a double-blind pilot study with parallel groups. Cephalalgia 16, 494–496 (1996).

    Article  CAS  PubMed  Google Scholar 

  170. Pringsheim, T., Magnoux, E., Dobson, C. F., Hamel, E. & Aube, M. Melatonin as adjunctive therapy in the prophylaxis of cluster headache: a pilot study. Headache 42, 787–792 (2002).

    Article  PubMed  Google Scholar 

  171. Peres, M. F. & Rozen, T. D. Melatonin in the preventive treatment of chronic cluster headache. Cephalalgia 21, 993–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  172. Robbins, M. S., Starling, A. J., Pringsheim, T. M., Becker, W. J. & Schwedt, T. J. Treatment of cluster headache: the American Headache Society evidence-based guidelines. Headache 56, 1093–1106 (2016).

    Article  PubMed  Google Scholar 

  173. Gelfand, A. A. & Goadsby, P. J. The role of melatonin in the treatment of primary headache disorders. Headache 56, 1257–1266 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Mantovani, M. et al. Mechanisms involved in the antinociception caused by melatonin in mice. J. Pineal Res. 41, 382–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  175. El-Shenawy, S. M., Abdel-Salam, O. M., Baiuomy, A. R., El-Batran, S. & Arbid, M. S. Studies on the anti-inflammatory and anti-nociceptive effects of melatonin in the rat. Pharmacol. Res. 46, 235–243 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Ambriz-Tututi, M., Rocha-González, H. I., Cruz, S. L. & Granados-Soto, V. Melatonin: a hormone that modulates pain. Life Sci. 84, 489–498 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Srinivasan, V. et al. Melatonin in antinociception: its therapeutic applications. Curr. Neuropharmacol. 10, 167–178 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Viswanathan, M. Melatonin inhibits calcitonin gene-related peptide-induced vasodilation and increase in cAMP in rat middle cerebral arteries. Eur. J. Pharmacol. 415, 247–250 (2001).

    Article  CAS  PubMed  Google Scholar 

  179. da Cunha Tanuri, F., Amado, D., Filho, I. & Peres, M. Melatonin reverts CGRP expression induced by capsaicin. Headache Med. 10, 24–28 (2019).

    Article  Google Scholar 

  180. Wheeler, S. D. & Carrazana, E. J. Topiramate-treated cluster headache. Neurology 53, 234–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  181. Forderreuther, S., Mayer, M. & Straube, A. Treatment of cluster headache with topiramate: effects and side-effects in five patients. Cephalalgia 22, 186–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  182. Lainez, M. J. et al. Topiramate in the prophylactic treatment of cluster headache. Headache 43, 784–789 (2003).

    Article  PubMed  Google Scholar 

  183. Huang, W. Y., Lo, M. C., Wang, S. J., Tsai, J. J. & Wu, H. M. Topiramate in prevention of cluster headache in the Taiwanese. Neurol. India 58, 284–287 (2010).

    Article  CAS  PubMed  Google Scholar 

  184. Leone, M. et al. Topiramate in cluster headache prophylaxis: an open trial. Cephalalgia 23, 1001–1002 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Pascual, J., Lainez, M. J., Dodick, D. & Hering-Hanit, R. Antiepileptic drugs for the treatment of chronic and episodic cluster headache: a review. Headache 47, 81–89 (2007).

    Article  PubMed  Google Scholar 

  186. Rosenfeld, W. E. Topiramate: a review of preclinical, pharmacokinetic, and clinical data. Clin. Ther. 19, 1294–1308 (1997).

    Article  CAS  PubMed  Google Scholar 

  187. Storer, R. J. & Goadsby, P. J. Topiramate inhibits trigeminovascular neurons in the cat. Cephalalgia 24, 1049–1056 (2004).

    Article  CAS  PubMed  Google Scholar 

  188. Storer, R. J. & Goadsby, P. J. Topiramate is likely to act outside of the trigeminocervical complex. Cephalalgia 33, 291–300 (2013).

    Article  PubMed  Google Scholar 

  189. Andreou, A. P. & Goadsby, P. J. Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia 31, 1343–1358 (2011).

    Article  PubMed  Google Scholar 

  190. Hoffmann, J. & Charles, A. Glutamate and its receptors as therapeutic targets for migraine. Neurotherapeutics 15, 361–370 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Poulsen, C. F. et al. Modulation by topiramate of AMPA and kainate mediated calcium influx in cultured cerebral cortical, hippocampal and cerebellar neurons. Neurochem. Res. 29, 275–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  192. Hebestreit, J. M. & May, A. Topiramate modulates trigeminal pain processing in thalamo-cortical networks in humans after single dose administration. PLOS ONE 12, e0184406 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Akerman, S. & Goadsby, P. J. Topiramate inhibits trigeminovascular activation: an intravital microscopy study. Br. J. Pharmacol. 146, 7–14 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Benschop, R. J. et al. Development of a novel antibody to calcitonin gene-related peptide for the treatment of osteoarthritis-related pain. Osteoarthr. Cartil. 22, 578–585 (2014).

    Article  CAS  Google Scholar 

  195. Goadsby, P. J. et al. Trial of galcanezumab in prevention of episodic cluster headache. N. Engl. J. Med. 381, 132–141 (2019). The results of the first phase III randomized, placebo-controlled trial to demonstrate efficacy of a CGRP monoclonal antibody in the prevention of episodic cluster headache.

    Article  CAS  PubMed  Google Scholar 

  196. Dodick, D. W. et al. Phase 3 randomized, placebo-controlled study of galcanezumab in patients with chronic cluster headache: results from 3-month double-blind treatment. Cephalalgia 40, 935–948 (2020). This negative study highlighted the possible mechanistic difference between episodic and chronic cluster headache.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Lipton RB, D. H. et al. Efficacy and safety of fremanezumab for the prevention of episodic cluster headache: results of a randomized, double-blind, placebo-controlled, phase 3 study. Cephalalgia 39, 358–359 (2019).

    Google Scholar 

  198. Bigal, M. E., Walter, S. & Rapoport, A. M. Therapeutic antibodies against CGRP or its receptor. Br. J. Clin. Pharmacol. 79, 886–895 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Felgenhauer, K. Protein size and cerebrospinal fluid composition. Klin. Wochenschr. 52, 1158–1164 (1974).

    Article  CAS  PubMed  Google Scholar 

  200. Johnson, K. W., Morin, S. M., Wroblewski, V. J. & Johnson, M. P. Peripheral and central nervous system distribution of the CGRP neutralizing antibody [(125)I] galcanezumab in male rats. Cephalalgia 39, 1241–1248 (2019).

    Article  PubMed  Google Scholar 

  201. Noseda, R. et al. Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier. Cephalalgia 40, 229–240 (2020).

    Article  PubMed  Google Scholar 

  202. Doods, H. et al. Pharmacological profile of BIBN4096BS, the first selective small molecule CGRP antagonist. Br. J. Pharmacol. 129, 420–423 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Christensen, S. L., Ernstsen, C., Olesen, J. & Kristensen, D. M. No central action of CGRP antagonising drugs in the GTN mouse model of migraine. Cephalalgia 40, 924–934 (2020).

    Article  PubMed  Google Scholar 

  204. Recober, A. et al. Role of calcitonin gene-related peptide in light-aversive behavior: implications for migraine. J. Neurosci. 29, 8798–8804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Mauskop, A. Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia 25, 82–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. de Coo, I. F. et al. Differential efficacy of non-invasive vagus nerve stimulation for the acute treatment of episodic and chronic cluster headache: a meta-analysis. Cephalalgia 39, 967–977 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Gaul, C. et al. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): a randomised controlled study. Cephalalgia 36, 534–546 (2016).

    Article  PubMed  Google Scholar 

  208. Nonis, R., D’Ostilio, K., Schoenen, J. & Magis, D. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: an electrophysiological study in healthy volunteers. Cephalalgia 37, 1285–1293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Frangos, E. & Komisaruk, B. R. Access to vagal projections via cutaneous electrical stimulation of the neck: fMRI evidence in healthy humans. Brain Stimul. 10, 19–27 (2017).

    Article  PubMed  Google Scholar 

  210. Juto, J. E. & Axelsson, M. Kinetic oscillation stimulation as treatment of non-allergic rhinitis: an RCT study. Acta Otolaryngol. 134, 506–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Moller, M., Schroeder, C. F. & May, A. Vagus nerve stimulation modulates the cranial trigeminal autonomic reflex. Ann. Neurol. 84, 886–892 (2018).

    Article  PubMed  Google Scholar 

  212. Schroeder, C. F., Moller, M. & May, A. nVNS sham significantly affects the trigeminal-autonomic reflex: a randomized controlled study. Neurology 93, e518–e521 (2019).

    Article  PubMed  Google Scholar 

  213. De Icco, R. et al. Peripheral vagal nerve stimulation modulates the nociceptive withdrawal reflex in healthy subjects: a randomized, cross-over, sham-controlled study. Cephalalgia 38, 1658–1664 (2018).

    Article  PubMed  Google Scholar 

  214. Akerman, S., Simon, B. & Romero-Reyes, M. Vagus nerve stimulation suppresses acute noxious activation of trigeminocervical neurons in animal models of primary headache. Neurobiol. Dis. 102, 96–104 (2017).

    Article  PubMed  Google Scholar 

  215. Goadsby, P. J. Pathophysiology of cluster headache: a trigeminal autonomic cephalgia. Lancet Neurol. 1, 251–257 (2002).

    Article  PubMed  Google Scholar 

  216. Schoenen, J. et al. Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study. Cephalalgia 33, 816–830 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Goadsby, P. J. et al. Safety and efficacy of sphenopalatine ganglion stimulation for chronic cluster headache: a double-blind, randomised controlled trial. Lancet Neurol. 18, 1081–1090 (2019).

    Article  PubMed  Google Scholar 

  218. Jürgens, T. P. et al. Long-term effectiveness of sphenopalatine ganglion stimulation for cluster headache. Cephalalgia 37, 423–434 (2017).

    Article  PubMed  Google Scholar 

  219. Barloese, M. et al. Sphenopalatine ganglion stimulation for cluster headache, results from a large, open-label European registry. J. Headache Pain 19, 6 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Ruskell, G. L. Orbital passage of pterygopalatine ganglion efferents to paranasal sinuses and nasal mucosa in man. Cell Tissues Organs 175, 223–228 (2003).

    Article  Google Scholar 

  221. Ruskell, G. L. Distribution of pterygopalatine ganglion efferents to the lacrimal gland in man. Exp. Eye Res. 78, 329–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  222. Suzuki, N. & Hardebo, J. E. The cerebrovascular parasympathetic innervation. Cerebrovasc. Brain Metab. Rev. 5, 33–46 (1993).

    CAS  PubMed  Google Scholar 

  223. Schytz, H. W. et al. Experimental activation of the sphenopalatine ganglion provokes cluster-like attacks in humans. Cephalalgia 33, 831–841 (2013).

    Article  PubMed  Google Scholar 

  224. Sicuteri, F., Geppetti, P., Marabini, S. & Lembeck, F. Pain relief by somatostatin in attacks of cluster headache. Pain 18, 359–365 (1984).

    Article  CAS  PubMed  Google Scholar 

  225. Helyes, Z. et al. Anti-inflammatory effect of synthetic somatostatin analogues in the rat. Br. J. Pharmacol. 134, 1571–1579 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Caleri, D., Marabini, S., Panconesi, A. & Pietrini, U. A pharmacological approach to the analgesizing mechanism of somatostatin in cluster headache. Ric. Clin. Lab. 17, 155–162 (1987).

    Article  CAS  PubMed  Google Scholar 

  227. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02619617 (2021).

  228. Krisch, B. Hypothalamic and extrahypothalamic distribution of somatostatin-immunoreactive elements in the rat brain. Cell Tissue Res. 195, 499–513 (1978).

    Article  CAS  PubMed  Google Scholar 

  229. Fassler, J. E., O’Dorisio, T. M., Mekhjian, H. S. & Gaginella, T. S. Octreotide inhibits increases in short-circuit current induced in rat colon by VIP, substance P, serotonin and aminophylline. Regul. Pept. 29, 189–197 (1990).

    Article  CAS  PubMed  Google Scholar 

  230. Kapicioğlu, Z., Kalyoncu, I. N., Deger, O. & Can, G. Effect of a somatostatin analogue (SMS 201-995) on tear secretion in rats. Int. Ophthalmol. 22, 43–45 (1998).

    Article  PubMed  Google Scholar 

  231. Leone, M., Franzini, A. & Bussone, G. Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache. N. Engl. J. Med. 345, 1428–1429 (2001).

    Article  CAS  PubMed  Google Scholar 

  232. Franzini, A., Ferroli, P., Leone, M. & Broggi, G. Stimulation of the posterior hypothalamus for treatment of chronic intractable cluster headaches: first reported series. Neurosurgery 52, 1095–1099 (2003).

    PubMed  Google Scholar 

  233. Leone, M. & Proietti Cecchini, A. Deep brain stimulation in headache. Cephalalgia 36, 1143–1148 (2015).

    Article  Google Scholar 

  234. Schoenen, J. et al. Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. Brain 128, 940–947 (2005).

    Article  CAS  PubMed  Google Scholar 

  235. Burns, B., Watkins, L. & Goadsby, P. J. Treatment of medically intractable cluster headache by occipital nerve stimulation: long-term follow-up of eight patients. Lancet 369, 1099–1106 (2007).

    Article  PubMed  Google Scholar 

  236. Fontaine, D. et al. Treatment of refractory chronic cluster headache by chronic occipital nerve stimulation. Cephalalgia 31, 1101–1105 (2011).

    Article  PubMed  Google Scholar 

  237. Magis, D., Gerard, P. & Schoenen, J. Invasive occipital nerve stimulation for refractory chronic cluster headache: what evolution at long-term? Strengths and weaknesses of the method. J. Headache Pain 17, 8 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Fontaine, D. et al. Occipital nerve stimulation improves the quality of life in medically-intractable chronic cluster headache: results of an observational prospective study. Cephalalgia 37, 1173–1179 (2017).

    Article  PubMed  Google Scholar 

  239. Leone, M., Proietti Cecchini, A., Messina, G. & Franzini, A. Long-term occipital nerve stimulation for drug-resistant chronic cluster headache. Cephalalgia 37, 756–763 (2017).

    Article  PubMed  Google Scholar 

  240. Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 33, 629–808 (2013).

    Article  Google Scholar 

  241. Vollesen, A. L. H. & Ashina, M. PACAP38: emerging drug target in migraine and cluster headache. Headache 57 (Suppl. 2), 56–63 (2017).

    Article  PubMed  Google Scholar 

  242. Wei, D. Y. & Goadsby, P. J. Comprehensive clinical phenotyping of nitroglycerin infusion induced cluster headache attacks. Cephalalgia https://doi.org/10.1177/0333102421989617 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Naegel, S. et al. Cortical plasticity in episodic and chronic cluster headache. Neuroimage. Clin. 6, 415–423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Messina, R. et al. Migraine and cluster headache classification using a supervised machine learning approach: a multimodal MRI study [abstract]. Neurology 92 (Suppl. 15), P4.10-016 (2019).

    Google Scholar 

  245. Negro, A., Sciattella, P., Spuntarelli, V., Martelletti, P. & Mennini, F. S. Direct and indirect costs of cluster headache: a prospective analysis in a tertiary level headache centre. J. Headache Pain 21, 44 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Mathew, N. T., Kailasam, J. & Meadors, L. Prophylaxis of migraine, transformed migraine, and cluster headache with topiramate. Headache 42, 796–803 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are part-funded by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley National Health Service (NHS) Foundation Trust and King’s College London. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to all aspects of the article.

Corresponding author

Correspondence to Peter J. Goadsby.

Ethics declarations

Competing interests

P.J.G. reports, over the last 36 months, grants and personal fees from Amgen and Eli-Lilly and Company, grant from Celgene, and personal fees from Alder Biopharmaceuticals, Aeon Biopharma, Allergan, Biohaven Pharmaceuticals Inc., Clexio, Electrocore LLC, eNeura, Epalex, GlaxoSmithKline, Impel Neuropharma, Lundbeck, MundiPharma, Novartis, Pfizer, Praxis, Sanofi, Santara Therapeutics, Satsuma, Teva Pharmaceuticals, Trigemina Inc., WL Gore, and personal fees for advice through Gerson Lehrman Group, LEK and Guidepoint, fees for educational materials from Massachusetts Medical Society, Medery, Medlink, PrimeEd, UptoDate, WebMD, and publishing royalties from Oxford University Press, and Wolters Kluwer, and for medicolegal advice in headache, and a patent magnetic stimulation for headache assigned to eNeura without fee (WO2016090333 A1). D.Y.W. declares no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks C. Gaul, P. Martelletti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, D.Y., Goadsby, P.J. Cluster headache pathophysiology — insights from current and emerging treatments. Nat Rev Neurol 17, 308–324 (2021). https://doi.org/10.1038/s41582-021-00477-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00477-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing