Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extended far-ultraviolet emission in distant dwarf galaxies

Abstract

Blue compact dwarf (BCD) galaxies are low-luminosity (absolute K-band magnitude, MK > −21 mag)1, metal-poor (1/50 ≤ Z/Z ≤ 1/2, where Z is the metallicity in terms of the solar metallicity Z)2, centrally concentrated3 galaxies with bright clumps of star formation4. Cosmological surface-brightness dimming5 and the small size of BCDs limit their detection at high redshifts, making their formation process difficult to observe. Observations of BCDs are needed at intermediate redshifts, where they are still young enough to show their formative stages, particularly in the outer regions where cosmic gas accretion should drive evolution. Here we report the observation of excess far-ultraviolet (FUV) emission in the outer regions of 11 BCDs in the GOODS South field at redshifts between 0.1 and 0.24, corresponding to look-back times of 1.3–2.8 billion years in standard cosmology. These observations were made by the Ultra-Violet Imaging Telescope6 on AstroSat7. For ten BCDs, the radial profiles of the intrinsic FUV emission, corrected for the instrument point spread function, have larger scale lengths than their optical counterparts observed with the Hubble Space Telescope. Such shallow FUV profiles suggest extended star formation in cosmically accreting disks. Clumpy structure in the FUV also suggests that the outer FUV disks are gravitationally unstable. Dynamical friction on the clumps drives them inwards at an average rate exceeding 106 solar masses per billion years.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Detection of XUV disks in two BCDs.
Fig. 2: One-dimensional surface-brightness profile fitting.
Fig. 3: Comparison of the star-formation properties of our BCDs with those of local galaxies.
Fig. 4: Relation between excess UV light and disk scale lengths.

Similar content being viewed by others

Data availability

The HST imaging data are available at https://archive.stsci.edu/hlsps/hlf/v1.5/ and the 3D-HST catalogue is available at https://3dhst.research.yale.edu/Data.php. The HAWK-I Ks band data are available at the ESO Science Archive Facility (http://archive.eso.org/scienceportal/home). The original level 1 far-UV data observed by UVIT/AstroSat are available for download from the ISSDC site at https://astrobrowse.issdc.gov.in/astro_archive/archive/Home.jsp.

Code availability

We have used standard data reduction tools in Python, IRAF, and the publicly available code SExtractor (https://www.astromatic.net/software/sextractor) and PROFILER (https://github.com/BogdanCiambur/PROFILER/) for this study. We also have used the MPFIT routine translated to Python language here (https://people.ast.cam.ac.uk/rcooke/python/packages/mpfit.py). The pipeline used to process the Level 1 AstroSat/UVIT data can be downloaded from http://astrosat-ssc.iucaa.in.

References

  1. Gil de Paz, A., Madore, B. F. & Pevunova, O. Palomar/Las Campanas imaging atlas of blue compact dwarf galaxies. I. Images and integrated photometry. Astrophys. J. Suppl. Ser. 147, 29–59 (2003).

    Article  CAS  ADS  Google Scholar 

  2. Kunth, D. & Östlin, G. The most metal-poor galaxies. Astron. Astrophys. Rev. 10, 1–79 (2000).

    Article  ADS  Google Scholar 

  3. Hunter, D. A. & Elmegreen, B. G. Broadband imaging of a large sample of irregular galaxies. Astrophys. J. Suppl. Ser. 162, 49–79 (2006).

    Article  CAS  ADS  Google Scholar 

  4. Östlin, G. et al. The source of leaking ionizing photons from Haro 11: clues from HST/COS spectroscopy of knots A, B, and C. Astrophys. J. 912, 155 (2021).

    Article  ADS  CAS  Google Scholar 

  5. Calvi, V., Stiavelli, M., Bradley, L., Pizzella, A. & Kim, S. The effect of surface brightness dimming in the selection of high-z galaxies. Astrophys. J. 796, 102 (2014).

    Article  ADS  Google Scholar 

  6. Tandon, S. N. et al. In-orbit performance of UVIT and first results. J. Astron. Astrophys. 38, 28 (2017).

    Article  ADS  Google Scholar 

  7. Singh, K. P. et al. ASTROSAT mission. Proc. SPIE 9144, 91441S (2014).

    Article  Google Scholar 

  8. Hunter, D. A. et al. The outer disks of dwarf irregular galaxies. Astron. J. 142, 121 (2011).

    Article  ADS  CAS  Google Scholar 

  9. Lian, J. H., Kong, X., Jiang, N., Yan, W. & Gao, Y. L. Surface brightness profiles of blue compact dwarf galaxies in the GOODS-N and GOODS-S field. Mon. Not. R. Astron. Soc. 451, 1130–1140 (2015).

    Article  ADS  Google Scholar 

  10. Galametz, A. et al. CANDELS multiwavelength catalogs: source identification and photometry in the CANDELS UKIDSS Ultra-deep Survey field. Astrophys. J. Suppl. Ser. 206, 10 (2013).

    Article  ADS  Google Scholar 

  11. Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  12. Boyle, B. J., Shanks, T. & Peterson, B. A. The evolution of optically selected QSOs—II. Mon. Not. R. Astron. Soc. 235, 935–948 (1988).

    Article  ADS  Google Scholar 

  13. Herrmann, K. A., Hunter, D. A. & Elmegreen, B. G. Surface brightness profiles of dwarf galaxies. I. Profiles and statistics. Astron. J 146, 104 (2013).

    Article  ADS  Google Scholar 

  14. Thilker, D. A. et al. A search for extended ultraviolet disk (XUV-disk) galaxies in the local Universe. Astrophys. J. Suppl. Ser. 173, 538 (2007).

    Article  CAS  ADS  Google Scholar 

  15. Kennicutt, R. C. & Evans, N. J. Star formation in the Milky Way and nearby galaxies. Ann. Rev. Astron. Astrophys. 50, 531–608 (2012).

    Article  CAS  ADS  Google Scholar 

  16. Hunter, D. A., Elmegreen, B. G. & Ludka, B. C. GALEX ultraviolet imaging of dwarf galaxies and star formation rates. Astron. J 139, 447–475 (2010).

    Article  CAS  ADS  Google Scholar 

  17. Jáchym, P., Combes, F., Cortese, L., Sun, M. & Kenney, J. D. P. Abundant molecular gas and inefficient star formation in intracluster regions: ram pressure stripped tail of the Norma galaxy ESO137-001. Astrophys. J. 792, 11 (2014).

    Article  ADS  CAS  Google Scholar 

  18. Dessauges-Zavadsky, M., Verdugo, C., Combes, F. & Pfenniger, D. CO map and steep Kennicutt–Schmidt relation in the extended UV disk of M 63. Astron. Astrophys. 566, A147 (2014).

    Article  ADS  CAS  Google Scholar 

  19. Bicalho, I. C., Combes, F., Rubio, M., Verdugo, C. & Salome, P. ALMA CO(2–1) observations in the XUV disk of M83. Astron. Astrophys. 623, A66 (2019).

    Article  CAS  ADS  Google Scholar 

  20. Hunter, D. A. et al. LITTLE THINGS. Astron. J 144, 134–163 (2012).

    Article  ADS  Google Scholar 

  21. Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. 123, 3–40 (1999).

    Article  CAS  ADS  Google Scholar 

  22. Elmegreen, D. M. et al. Clumpy galaxies in goods and gems: massive analogs of local dwarf irregulars. Astrophys. J. 701, 306–329 (2009).

    Article  CAS  ADS  Google Scholar 

  23. Bell, E. & de Jong, R. S. Stellar mass-to-light ratios and the Tully–Fisher relation. Astrophys. J. 550, 212–229 (2001).

    Article  ADS  Google Scholar 

  24. Elmegreen, B. G., Zhang, H.-X. & Hunter, D. A. In-spiraling clumps in blue compact dwarf galaxies. Astrophys. J. 747, 105–114 (2012).

    Article  ADS  Google Scholar 

  25. Binney, J. & Tremaine, S. Galactic Dynamics (Princeton Univ. Press, 2008)

  26. Ceverino, D., Dekel, A. & Bournaud, F. High-redshift clumpy discs and bulges in cosmological simulations. Mon. Not. R. Astron. Soc. 404, 2151–2169 (2010).

    CAS  ADS  Google Scholar 

  27. Zhang, H.-X., Hunter, D. A., Elmegreen, B. G., Gao, Y. & Schruba, A. Outside-in shrinking of the star-forming disk of dwarf irregular galaxies. Astron. J 143, 47 (2012).

    Article  ADS  CAS  Google Scholar 

  28. Schulte-Ladbeck, R. E., Hopp, U., Crone, M. M. & Greggio, L. A stellar population gradient in VII Zw 403: implications for the formation of blue compact dwarf galaxies. Astrophys. J. 525, 709–719 (1999).

    Article  ADS  Google Scholar 

  29. Momcheva, I. G. et al. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 grism spectra, redshifts, and emission line measurements for 100,000 galaxies. Astrophys. J. Suppl. Ser. 225, 27 (2016).

    Article  ADS  CAS  Google Scholar 

  30. Boissier, S. et al. The GALEX Ultraviolet Virgo Cluster Survey (GUViCS). II. Constraints on star formation in ram-pressure stripped gas. Astron. Astrophys. 545, A142 (2012).

    Article  CAS  Google Scholar 

  31. Oke, J. B. Absolute spectral energy distributions for white dwarfs. Astrophys. J. Suppl. Ser. 27, 21 (1974).

    Article  CAS  ADS  Google Scholar 

  32. Skelton, R. E. et al. 3D-HST WFC3-selected photometric catalogs in the five CANDELS/3D-HST fields: photometry, photometric redshifts, and stellar masses. Astrophys. J. Suppl. Ser. 214, 24 (2014).

    Article  ADS  Google Scholar 

  33. Illingworth, G. et al. The Hubble Legacy Fields (HLF-GOODS-S) v1.5 data products: combining 2442 orbits of GOODS-S/CDF-S region ACS and WFC3/IR images. Preprint at https://arxiv.org/abs/1606.00841 (2016).

  34. Fontana, A. et al. The HAWK-I UDS and GOODS Survey (HUGS): survey design and deep K-band number counts. Astron. Astrophys. 570, A11 (2014).

    Article  Google Scholar 

  35. Saha, K. et al. AstroSat detection of Lyman continuum emission from a z = 1.42 galaxy. Nat. Astron. 4, 1185–1194 (2020).

    Article  ADS  Google Scholar 

  36. Xu, C. Kevin et al. Number counts of GALEX sources in far-ultraviolet (1530 Å) and near-ultraviolet (2310 Å) bands. Astrophys. J. Lett. 619, L11–L14 (2005).

    Article  CAS  ADS  Google Scholar 

  37. Bertin, E. & Arnouts, S. SExtractor: software for source extraction. Astron. Astrophys. Suppl. Ser. 117, 393–404 (1996).

    Article  ADS  Google Scholar 

  38. Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998).

    Article  ADS  Google Scholar 

  39. Bianchi, L. GALEX and star formation. Astron. Space. Sci. 335, 51–60 (2011).

    Article  ADS  Google Scholar 

  40. Tody, D. The IRAF data reduction and analysis system. Proc. SPIE 627, 733 (1986).

    Article  ADS  Google Scholar 

  41. Jedrzejewski, R. I. CCD surface photometry of elliptical galaxies. I—Observations, reduction and results. Mon. Not. R. Astron. Soc. 226, 747–768 (1987).

    Article  ADS  Google Scholar 

  42. Ciambur, B. C. PROFILER—a fast and versatile new program for decomposing galaxy light profiles. Pub. Astron. Soc. Aus. 33, e062 (2016).

    Article  ADS  Google Scholar 

  43. Erwin, P., Pohlen, M. & Beckman, J. E. The outer disks of early-type galaxies. I. Surface-brightness profiles of barred galaxies. Astron. J. 135, 20–54 (2008).

    Article  CAS  ADS  Google Scholar 

  44. Markwardt, C. B. Non-linear least-squares fitting in IDL with MPFIT. In Astronomical Data Analysis Software and Systems XVIII ASP Conference Series Vol. 411 (eds Bohlender, D. et al.) 251–254 (ASP, 2009).

  45. Moré, J. J., Garbow, B. S. & Hillstrom, K. E. Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  46. Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).

    Article  ADS  Google Scholar 

  47. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  ADS  Google Scholar 

  48. Akhlaghi, M. Carving out the low surface brightness Universe with Noise Chisel. Preprint at https://arxiv.org/abs/1909.11230 (2019).

  49. Hathi, N. P., Mobasher, B., Capak, P., Wang, W.-H. & Ferguson, H. C. Near-infrared survey of the GOODS-North field: search for luminous galaxy candidates at z > ~6.5. Astrophys. J. 757, 43 (2012).

    Article  ADS  Google Scholar 

  50. Reddy, N. A. et al. The HDUV Survey: a revised assessment of the relationship between UV slope and dust attenuation for high-redshift galaxies. Astrophys. J. 853, 56 (2018).

    Article  ADS  CAS  Google Scholar 

  51. Zeimann, G. R. et al. The dust attenuation curve versus stellar mass for emission line galaxies at z ~ 2. Astrophys. J. 814, 162 (2015).

    Article  ADS  Google Scholar 

  52. Bouwens, R. J. et al. ALMA spectroscopic survey in the Hubble Ultra Deep Field: the infrared excess of UV-selected z = 2–10 galaxies as a function of UV-continuum slope and stellar mass. Astrophys. J. 833, 72 (2016).

    Article  ADS  CAS  Google Scholar 

  53. Papaderos, P. et al. The blue compact dwarf galaxy I Zw 18: a comparative study of its low-surface-brightness component. Astron. Astrophys. 393, 461–483 (2002).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper uses the data from the AstroSat mission of the Indian Space Research Organisation (ISRO), archived at the Indian Space Science Data Centre (ISSDC). The far- and near-UV observations were carried out by UVIT, which was built in collaboration between IIA, IUCAA, TIFR, ISRO and CSA. A.B. acknowledges the support of the DST-INSPIRE Fellowship programme by the Government of India. A.B. and R.G. thank the IUCAA associateship programme for their support and hospitality. K.S. and F.C. acknowledge the support of CEFIPRA-IFCPAR grant through the project number 5804-1 during its initial phase.

Author information

Authors and Affiliations

Authors

Contributions

A.B. contributed to the data acquisition, analysis, figures and writing. K.S. conceptualized the overall project, reduced the UVIT raw data with the L2 pipeline, and contributed to analysis and writing. B.E. contributed to the analysis and writing. R.G., F.C. and S.N.T. participated actively in the scientific discussion and interpretation throughout the project, and provided critical inputs to the manuscript.

Corresponding authors

Correspondence to Anshuman Borgohain or Kanak Saha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Extended data

is available for this paper at https://doi.org/10.1038/s41586-022-04905-9.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Imaging of BCD sample.

Same as Fig. 1 (a,b,d,e) but for the rest of the BCDs in our sample (see ED Fig. 1 for the rest of the BCDs). Individual panel sizes are 15”x15”, except GS12–18”x18”. We include the XUV disk type, if qualified, for each BCD in the lower left corner of each panel. We find a total of 6 sources (orange boxes) having S/N ≥ 3 and without any HST counterpart outside the XUV region of the BCDs. Colour bar label is flux in counts per second.

Extended Data Fig. 2 1D Surface brightness profile fitting of BCD sample.

Same as in Fig. 2 but for the rest of the BCDs in our sample (see ED Fig. 2 for the rest of the BCDs). In each panel, we include the XUV types and ΔLx values for each BCD. All data points have 1σ error bars.

Extended Data Fig. 3 Test for clump significance.

a. Patch of sky of size 341 × 341 pixels devoid of bright and large sources in the GOODS South field. Red circles denote sources having S/N ≥ 3 and their number is 49. Of these, 13 are marked with black circles that do not have any HST counterpart . b. S/N histogram of sources detected in the patch shown in a. Panel c, e GS3 and GS6 with the same size as presented in Fig. 1. Cyan circles and boxes mark the SExtractor-detected sources. Sources having S/N < 3 are marked with cyan circles. Sources having S/N ≥ 3 and HST counterparts are marked with cyan dashed squares. The orange square has S/N ≥ 3 and no HST counterpart. Magenta circles mark noise dips below a flux value of zero. Panel d, f represent flux (measured within a fixed aperture of size 0.7” radius) histograms corresponding to panel c, e.

Extended Data Table 1 Photometric and structural parameters of the BCDs
Extended Data Table 2 Clump detection parameters
Extended Data Table 3 S/N of SExtractor-detected sources around GS3 and GS6
Extended Data Table 4 Full FUV-clump analysis in our sample of BCDs
Extended Data Table 5 Various metrics derived for the XUV disks of the BCDs
Extended Data Table 6 XUV ages based on observed FUV – NUV colour and stellar population synthesis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borgohain, A., Saha, K., Elmegreen, B. et al. Extended far-ultraviolet emission in distant dwarf galaxies. Nature 607, 459–462 (2022). https://doi.org/10.1038/s41586-022-04905-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04905-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing