Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the rise of cardiometabolic diseases in low- and middle-income countries

Abstract

Increases in the prevalence of noncommunicable diseases (NCDs), particularly cardiometabolic diseases such as cardiovascular disease, stroke and diabetes, and their major risk factors have not been uniform across settings: for example, cardiovascular disease mortality has declined over recent decades in high-income countries but increased in low- and middle-income countries (LMICs). The factors contributing to this rise are varied and are influenced by environmental, social, political and commercial determinants of health, among other factors. This Review focuses on understanding the rise of cardiometabolic diseases in LMICs, with particular emphasis on obesity and its drivers, together with broader environmental and macro determinants of health, as well as LMIC-based responses to counteract cardiometabolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The capacity-load model.

Similar content being viewed by others

References

  1. Horton, R. Offline: time to radically rethink non-communicable diseases. Lancet 393, 1922 (2019).

    PubMed  Google Scholar 

  2. Nugent, R. & Fottrell, E. Non-communicable diseases and climate change: linked global emergencies. Lancet 394, 622–623 (2019).

    PubMed  Google Scholar 

  3. Heller, O. et al. The process of prioritization of non-communicable diseases in the global health policy arena. Health Policy Plan. 34, 370–383 (2019).

    PubMed  PubMed Central  Google Scholar 

  4. Bloom, D.E. et al. The Global Economic Burden of Noncommunicable Diseases (World Economic Forum, 2011).

  5. Kelland, K. Chronic disease to cost $47 trillion by 2030: WEF. Reuters (18 September 2011).

  6. Nugent, R. et al. Investing in non-communicable disease prevention and management to advance the Sustainable Development Goals. Lancet 391, 2029–2035 (2018).

    PubMed  Google Scholar 

  7. Jaspers, L. et al. The global impact of non-communicable diseases on households and impoverishment: a systematic review. Eur. J. Epidemiol. 30, 163–188 (2015).

    PubMed  Google Scholar 

  8. Niessen, L. W. et al. Tackling socioeconomic inequalities and non-communicable diseases in low-income and middle-income countries under the Sustainable Development agenda. Lancet 391, 2036–2046 (2018).

    PubMed  Google Scholar 

  9. Ghebreyesus, T. A. Acting on NCDs: counting the cost. Lancet 391, 1973–1974 (2018).

    PubMed  Google Scholar 

  10. Ezzati, M., Pearson-Stuttard, J., Bennett, J. E. & Mathers, C. D. Acting on non-communicable diseases in low- and middle-income tropical countries. Nature 559, 507–516 (2018).

    CAS  PubMed  Google Scholar 

  11. NCD Countdown 2030 Collaborators. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. Lancet 392, 1072–1088 (2018).

    Google Scholar 

  12. Ezzati, M. et al. Contributions of risk factors and medical care to cardiovascular mortality trends. Nat. Rev. Cardiol. 12, 508–530 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Roth, G. A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J. Am. Coll. Cardiol. 70, 1–25 (2017).

    PubMed  PubMed Central  Google Scholar 

  14. Mensah, G. A. et al. Decline in cardiovascular mortality: possible causes and implications. Circ. Res. 120, 366–380 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lackland, D. T. et al. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American Stroke Association. Stroke 45, 315–353 (2014).

    PubMed  Google Scholar 

  16. Ford, E. S. & Capewell, S. Proportion of the decline in cardiovascular mortality disease due to prevention versus treatment: public health versus clinical care. Annu. Rev. Public Health 32, 5–22 (2011).

    PubMed  Google Scholar 

  17. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

  18. Gregg, E. W., Sattar, N. & Ali, M. K. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 4, 537–547 (2016).

    PubMed  Google Scholar 

  19. World Health Organization. Global Status Report on Noncommunicable Diseases 2014 (World Health Organization, 2015).

  20. Benziger, C. P., Roth, G. A. & Moran, A. E. The global burden of disease study and the preventable burden of NCD. Glob. Heart 11, 393–397 (2016).

    PubMed  Google Scholar 

  21. Yusuf, S. et al. Modifiable risk factors, cardiovascular disease, and mortality in 155 722 individuals from 21 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet. https://doi.org/10.1016/S0140-6736(19)32008-2 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yusuf, S. et al. Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N. Engl. J. Med. 371, 818–827 (2014).

    CAS  PubMed  Google Scholar 

  23. Bowry, A. D. K., Lewey, J., Dugani, S. B. & Choudhry, N. K. The Burden of cardiovascular disease in low- and middle-income countries: epidemiology and management. Can. J. Cardiol. 31, 1151–1159 (2015).

    PubMed  Google Scholar 

  24. World Heart Federation. Resources and tools to achieve 25 by 25. WHF Global CVD Roadmaps (World Health Federation, accessed 25 July 2019); http://www.cvdroadmaps.org/

  25. Wells, J. C. K. The thrifty phenotype: An adaptation in growth or metabolism? Am. J. Hum. Biol. 23, 65–75 (2011).

    PubMed  Google Scholar 

  26. Wells, J.C.K. The Metabolic Ghetto: An Evolutionary Perspective on Nutrition, Power Relations and Chronic Disease (Cambridge Univ. Press, 2016).

  27. NCD Risk Factor Collaboration (NCD-RisC)–Africa Working Group. Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies. Int. J. Epidemiol. 46, 1421–1432 (2017).

  28. NCD Risk Factor Collaboration (NCD-RisC). Rising rural body-mass index is the main driver of the global obesity epidemic in adults. Nature 569, 260–264 (2019)..

  29. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017)..

  30. Jaacks, L. M. et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 7, 231–240 (2019).

    PubMed  PubMed Central  Google Scholar 

  31. Jiwani, S. S. et al. The shift of obesity patterns burden by socioeconomic status between 1998 and 2017 in Latin America and the Caribbean: a cross-sectional series study. Lancet Glob. Health (in the press).

  32. Brandkvist, M. et al. Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal findings from the HUNT Study. Br. Med. J. 366, l4067 (2019).

    Google Scholar 

  33. Omran, A. R. The epidemiologic transition. A theory of the epidemiology of population change. Milbank Mem. Fund. Q. 49, 509–538 (1971).

    CAS  PubMed  Google Scholar 

  34. Mendoza, W. & Miranda, J. J. Global shifts in cardiovascular disease, the epidemiologic transition, and other contributing factors: toward a new practice of global health cardiology. Cardiol. Clin. 35, 1–12 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Yusuf, S., Reddy, S., Ounpuu, S. & Anand, S. Global burden of cardiovascular diseases: part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation 104, 2746–2753 (2001).

    CAS  PubMed  Google Scholar 

  36. Wells, J. C. K. Maternal capital and the metabolic ghetto: an evolutionary perspective on the transgenerational basis of health inequalities. Am. J. Hum. Biol. 22, 1–17 (2010).

    PubMed  Google Scholar 

  37. Unnikrishnan, R., Gupta, P. K. & Mohan, V. Diabetes in South Asians: phenotype, clinical presentation, and natural history. Curr. Diab. Rep. 18, 30 (2018).

    PubMed  Google Scholar 

  38. Pomeroy, E., Mushrif-Tripathy, V., Cole, T. J., Wells, J. C. K. & Stock, J. T. Ancient origins of low lean mass among South Asians and implications for modern type 2 diabetes susceptibility. Sci. Rep. 9, 10515 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Black, R. E. et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243–260 (2008).

    PubMed  Google Scholar 

  40. Martorell, R. Improved nutrition in the first 1000 days and adult human capital and health. Am. J. Hum. Biol. https://doi.org/10.1002%2Fajhb.22952 (2017).

    Google Scholar 

  41. Victora, C. G. et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet 371, 340–357 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoddinott, J. et al. Adult consequences of growth failure in early childhood. Am. J. Clin. Nutr. 98, 1170–1178 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Smith, L. C. & Haddad, L. Reducing child undernutrition: past drivers and priorities for the post-MDG era. World Dev. 68, 180–204 (2015).

    Google Scholar 

  44. Cravioto, J., DeLicardie, E. R. & Birch, H. G. Nutrition, growth and neurointegrative development: an experimental and ecologic study. Pediatrics 38, 319–320 (1966).

    Google Scholar 

  45. Crimmins, E. M. & Finch, C. E. Infection, inflammation, height, and longevity. Proc. Natl. Acad. Sci. USA 103, 498–503 (2006).

    CAS  PubMed  Google Scholar 

  46. Gluckman, P. D. & Hanson, M. A. Living with the past: evolution, development, and patterns of disease. Science 305, 1733–1736 (2004).

    CAS  PubMed  Google Scholar 

  47. Hernández-Cordero, S. et al. Overweight and obesity in Mexican children and adolescents during the last 25 years. Nutr. Diabetes 7, e280 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Kain, J., Uauy, R., Lera, L., Taibo, M. & Albala, C. Trends in height and BMI of 6-year-old children during the nutrition transition in Chile. Obes. Res. 13, 2178–2186 (2005).

    PubMed  Google Scholar 

  49. Perez-Escamilla, R. et al. Nutrition disparities and the global burden of malnutrition. Br. Med. J. 361, k2252 (2018).

    Google Scholar 

  50. World Health Organization. Double Burden of Malnutrition (World Health Organization, 2017, accessed 25 September 2019); https://www.who.int/nutrition/double-burden-malnutrition/en/

  51. Webb, P. et al. Hunger and malnutrition in the 21st century. Br. Med. J. 361, k2238 (2018).

    Google Scholar 

  52. de Onis, M. & Branca, F. Childhood stunting: a global perspective. Matern. Child Nutr. 12(Suppl 1), 12–26 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Rao, N. et al. Early Childhood Development and Cognitive Development in Developing Countries: A Rigorous Literature Review (Department for International Development, 2014); https://www.gov.uk/dfid-research-outputs/early-childhood-development-and-cognitive-development-in-developing-countries-a-rigorous-literature-review

  54. Miranda, J. J., Wells, J. C. K. & Smeeth, L. [Transitions in context: findings related to rural-to-urban migration and chronic non-communicable diseases in Peru]. Rev. Peru. Med. Exp. Salud Publica 29, 366–372 (2012).

  55. Miranda, J. J., Gilman, R. H. & Smeeth, L. Differences in cardiovascular risk factors in rural, urban and rural-to-urban migrants in Peru. Heart 97, 787–796 (2011).

    PubMed  Google Scholar 

  56. Hawkes, C. & Popkin, B. M. Can the sustainable development goals reduce the burden of nutrition-related non-communicable diseases without truly addressing major food system reforms? BMC Med. 13, 143 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Swinburn, B. et al. INFORMAS (International Network for Food and Obesity/non-communicable diseases Research, Monitoring and Action Support): overview and key principles. Obes. Rev. 14(Suppl 1), 1–12 (2013).

    PubMed  Google Scholar 

  58. Popkin, B. M. & Reardon, T. Obesity and the food system transformation in Latin America. Obes. Rev. 19, 1028–1064 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Baker, P. & Friel, S. Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Glob. Health 12, 80 (2016).

    Google Scholar 

  60. Vandevijvere, S. et al. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes. Rev. https://doi.org/10.1111/obr.12860 (2019).

  61. Monteiro, C. A. et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr. 22, 936–941 (2019).

    PubMed  Google Scholar 

  62. Carmo, A. S. D., Assis, M. M., Cunha, C. F., Oliveira, T. R. P. R. & Mendes, L. L. The food environment of Brazilian public and private schools. Cad. Saude Publica 34, e00014918 (2018).

    PubMed  Google Scholar 

  63. Pehlke, E. L., Letona, P., Hurley, K. & Gittelsohn, J. Guatemalan school food environment: impact on schoolchildren’s risk of both undernutrition and overweight/obesity. Health Promot. Int. 31, 542–550 (2016).

    PubMed  Google Scholar 

  64. López-Barrón, R. G., Jiménez-Cruz, A. & Bacardí-Gascón, M. Modifiable environmental obesity risk factors among elementary school children in a Mexico-us border city. Nutr. Hosp. 31, 2047–2053 (2015).

    PubMed  Google Scholar 

  65. Corvalán, C. et al. Nutrition status of children in Latin America. Obes. Rev. 18(Suppl 2), 7–18 (2017).

    PubMed  PubMed Central  Google Scholar 

  66. Parra, D. C. et al. Asociación entre el consumo de alimentos ultraprocesados y el perfil nutricional de la dieta de los colombianos en 2005. [Association between ultra-processed food consumption and the nutrient profile of the Colombian diet in 2005.]. Salud Publica Mex. 61, 147–154 (2019).

    PubMed  Google Scholar 

  67. Marrón-Ponce, J.A., Flores, M., Cediel, G., Monteiro, C.A. & Batis, C. Associations between consumption of ultra-processed foods and intake of nutrients related to chronic non-communicable diseases in Mexico. J. Acad. Nutr. Diet. https://doi.org/10.1016/j.jand.2019.04.020 (2019).

    PubMed  Google Scholar 

  68. Louzada, M. L. D. C. et al. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr. 21, 94–102 (2018).

    PubMed  Google Scholar 

  69. Cediel, G. et al. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 21, 125–133 (2018).

    PubMed  Google Scholar 

  70. Dunford, E. K. et al. A comparison of the healthiness of packaged foods and beverages from 12 countries using the Health Star Rating nutrient profiling system, 2013-2018. Obes. Rev. https://doi.org/10.1111/obr.12879 (2019).

    Article  PubMed  Google Scholar 

  71. Pries, A.M. et al. Consumption of commercially produced snack foods and sugar-sweetened beverages during the complementary feeding period in four African and Asian urban contexts. Matern. Child Nutr. (13 Suppl 2), (2017).

    Google Scholar 

  72. Headey, D. D. & Alderman, H. H. The relative caloric prices of healthy and unhealthy foods differ systematically across income levels and continents. J. Nutr. https://doi.org/10.1093/jn/nxz158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pan American Health Organization. Ultra-processed Food and Drink Products in Latin America: Trends, Impact on Obesity, Policy Implications (PAHO, 2105); http://iris.paho.org/xmlui/handle/123456789/7699

  74. Martínez Steele, E., Juul, F., Neri, D., Rauber, F. & Monteiro, C. A. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev. Med. 125, 40–48 (2019).

    PubMed  Google Scholar 

  75. Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). Br. Med. J. 365, l1451 (2019).

    Google Scholar 

  76. Schnabel, L. et al. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern. Med. 179, 490–498 (2019).

    PubMed  PubMed Central  Google Scholar 

  77. Popkin, B. M. Rural areas drive increases in global obesity. Nature 569, 200–201 (2019).

    CAS  PubMed  Google Scholar 

  78. Mannucci, P. M. & Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 14, E1048 (2017).

    PubMed  Google Scholar 

  79. Schraufnagel, D. E. et al. Air pollution and noncommunicable diseases: a review by the Forum of International Respiratory Societies’ Environmental Committee, part 2: air pollution and organ systems. Chest 155, 417–426 (2019).

    PubMed  Google Scholar 

  80. World Health Organization. Ambient Air Pollution: a Global Assessment of Exposure and Burden of Disease (World Health Organization, 2016).

  81. Bonjour, S. et al. Solid fuel use for household cooking: country and regional estimates for 1980-2010. Environ. Health Perspect. 121, 784–790 (2013).

    PubMed  PubMed Central  Google Scholar 

  82. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1923–1994 (2018).

    Google Scholar 

  83. Takeshita, T. Global scenarios of air pollutant emissions from road transport through to 2050. Int. J. Environ. Res. Public Health 8, 3032–3062 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Health Effects of Transport-related Air Pollution (World Health Organization, Regional Office for Europe, 2005).

  85. Grote, M., Williams, I., Preston, J. & Kemp, S. Including congestion effects in urban road traffic CO2 emissions modelling: do local government authorities have the right options? Transp. Res. Part D. Transp. Environ. 43, 95–106 (2016).

    Google Scholar 

  86. Quadrelli, R. & Peterson, S. The energy–climate challenge: recent trends in CO2 emissions from fuel combustion. Energy Policy 35, 5938–5952 (2007).

    Google Scholar 

  87. International Energy Agency. CO 2 Emissions Statistics (IEA, accessed 26 September 2019); https://www.iea.org/statistics/co2emissions/

  88. Kinney, P. L. et al. Traffic impacts on PM(2.5) air quality in Nairobi, Kenya. Environ. Sci. Policy 14, 369–378 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, J. et al. Vehicle emission and atmospheric pollution in China: problems, progress, and prospects. PeerJ 7, e6932 (2019).

    PubMed  PubMed Central  Google Scholar 

  90. Pan American Health Organization/World Health Organization. Ambient and household air pollution and health: frequently asked questions (PAHO/WHO, 2018, accessed 2 October 2019); https://www.paho.org/hq/index.php?option=com_content&view=article&id=14454:ambient-and-household-air-pollution-and-health-frequently-asked-questions&Itemid=72243&lang=en

  91. Schraufnagel, D. E. et al. Air pollution and noncommunicable diseases: a review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: the damaging effects of air pollution. Chest 155, 409–416 (2019).

    PubMed  Google Scholar 

  92. Sinharay, R. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet 391, 339–349 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2009 Revision (United Nations, 2010).

  94. United Nations, Department of Economic and Social Affairs, Population Division. Population 2030: Demographic Challenges and Opportunities for Sustainable Development Planning (United Nations, 2015).

  95. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision (United Nations, 2014).

  96. Simone, A. & Pieterse, E. New Urban Worlds: Inhabiting Dissonant Times (Wiley, 2018).

  97. Cook, G. P. Khayelitsha: policy change or crisis response? Trans. Inst. Br. Geogr. 11, 57–66 (1986).

    Google Scholar 

  98. UN-Habitat. The State of African Cities 2014: Re-imagining Sustainable Urban Transitions (UN-Habitat, 2015).

  99. Vearey, J., Luginaah, I., Magitta, N. F., Shilla, D. J. & Oni, T. Urban health in Africa: a critical global public health priority. BMC Public Health 19, 340 (2019).

    PubMed  PubMed Central  Google Scholar 

  100. World Bank. World Bank Open Data (World Bank, accessed 2 October 2019); https://data.worldbank.org/ accessed 2 October 2019).

  101. Habitat III. The New Urban Agenda (Habitat III, accessed 2 July 2019); http://habitat3.org/the-new-urban-agenda/

  102. United Nations. United Nations Sustainable Development Goals (UN, accessed 2 July 2019); https://www.un.org/sustainabledevelopment/sustainable-development-goals/

  103. Healthy Cities Initiative in the African Region: Evaluation Manual (World Health Organization, Regional Office for Africa, 2002).

  104. BreatheLife. Accra, Ghana is first African city to join the BreatheLife campaign. BreatheLife 2030, 15 August 2018; https://breathelife2030.org/news/accra-ghana-first-african-city-join-breathelife-campaign/

  105. World Health Organization. Health in All Policies: Framework for Country Action (WHO, 2016, accessed 25 September 2019); https://www.who.int/healthpromotion/frameworkforcountryaction/en/

  106. World Health Organization. Health as the pulse of the new urban agenda: United Nations conference on housing and sustainable urban development, Quito, October 2016 (WHO, 2016); https://apps.who.int/iris/bitstream/handle/10665/250367/9789241511445-eng.pdf

  107. Triana, C. A. et al. Active streets for children: the case of the Bogotá Ciclovía. PLoS One 14, e0207791 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. World Health Organization & UN-Habitat. Global Report on Urban Health: Equitable Healthier Cities for Sustainable Development (World Health Organization, 2016).

  109. Knai, C. et al. Systems thinking as a framework for analyzing commercial determinants of health. Milbank Q. 96, 472–498 (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Buse, K., Tanaka, S. & Hawkes, S. Healthy people and healthy profits? Elaborating a conceptual framework for governing the commercial determinants of non-communicable diseases and identifying options for reducing risk exposure. Glob. Health 13, 34 (2017).

    Google Scholar 

  111. Manthey, J. et al. Global alcohol exposure between 1990 and 2017 and forecasts until 2030: a modelling study. Lancet 393, 2493–2502 (2019).

    PubMed  Google Scholar 

  112. Stuckler, D., McKee, M., Ebrahim, S. & Basu, S. Manufacturing epidemics: the role of global producers in increased consumption of unhealthy commodities including processed foods, alcohol, and tobacco. PLoS Med. 9, e1001235 (2012).

    PubMed  PubMed Central  Google Scholar 

  113. Kickbusch, I., Allen, L. & Franz, C. The commercial determinants of health. Lancet Glob. Health 4, e895–e896 (2016).

    PubMed  Google Scholar 

  114. Franz, C. & Kickbusch, I. The Capital NCD-Nexus: the commercial determinants of health and global capital flows. Eurohealth (Lond.) 24, 21–25 (2018).

    Google Scholar 

  115. Moodie, R. et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet 381, 670–679 (2013).

    PubMed  Google Scholar 

  116. Freudenberg, N. & Galea, S. The impact of corporate practices on health: implications for health policy. J. Public Health Policy 29, 86–104 (2008). discussion 105.

    PubMed  Google Scholar 

  117. Sá, T. H. et al. Health impact modelling of different travel patterns on physical activity, air pollution and road injuries for São Paulo, Brazil. Environ. Int. 108, 22–31 (2017).

    PubMed  PubMed Central  Google Scholar 

  118. Zapata-Diomedi, B. et al. A shift from motorised travel to active transport: what are the potential health gains for an Australian city? PLoS One 12, e0184799 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. International Life Sciences Institute. Mission & operating principles (ILSI, accessed 3 October 2019); https://ilsi.org/about/mission/

  120. Steele, S., Ruskin, G., Sarcevic, L., McKee, M. & Stuckler, D. Are industry-funded charities promoting “advocacy-led studies” or “evidence-based science”?: a case study of the International Life Sciences Institute. Glob. Health 15, 36 (2019).

    Google Scholar 

  121. Hastings, G. Why corporate power is a public health priority. Br. Med. J. 345, e5124 (2012).

    Google Scholar 

  122. Allemandi, L., Castronuovo, L., Tiscornia, M. V., Ponce, M. & Schoj, V. Food advertising on Argentinean television: are ultra-processed foods in the lead? Public Health Nutr. 21, 238–246 (2018).

    PubMed  Google Scholar 

  123. Busse, P. & Díaz, R. What are the television viewing and eating habits of children in Peru? Glob. Health Promot. 23, 50–60 (2016).

    PubMed  Google Scholar 

  124. Correa, T., Reyes, M., Smith Taillie, L. P. & Dillman Carpentier, F. R. The prevalence and audience reach of food and beverage advertising on Chilean television according to marketing tactics and nutritional quality of products. Public Health Nutr. 22, 1113–1124 (2019).

    PubMed  Google Scholar 

  125. Bacardí-Gascón, M. & Jiménez-Cruz, A. TV food advertising geared to children in Latin-American countries and Hispanics in the USA: a review. Nutr. Hosp. 31, 1928–1935 (2015).

    PubMed  Google Scholar 

  126. Smith, R., Kelly, B., Yeatman, H. & Boyland, E. Food marketing influences children’s attitudes, preferences and consumption: a systematic critical review. Nutrients 11, E875 (2019).

    PubMed  Google Scholar 

  127. Mediano Stoltze, F. et al. Prevalence of child-directed and general audience marketing strategies on the front of beverage packaging: the case of Chile. Public Health Nutr. 21, 454–464 (2018).

    PubMed  Google Scholar 

  128. Kelly, B. et al. Global benchmarking of children’s exposure to television advertising of unhealthy foods and beverages across 22 countries. Obes. Rev. https://doi.org/10.1111/obr.12840 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Harris, J. L., Frazier, W., III, Kumanyika, S. & Ramirez, A. G. Increasing Disparities in Unhealthy Food Advertising Targeted to Hispanic and Black Youth (Rudd Center for Food Policy & Obesity, University of Connecticut; Drexel University; Salud America!, University of Texas Health Science Center at San Antonio, 2019).

  130. World Health Organization. Noncommunicable diseases: key facts (WHO, accessed 26 September 2019); https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases

  131. Stuckler, D., Siegel, K., De Vogli, R. & Basu, S. Sick individuals, sick populations: the societal determinants of chronic diseases. In Sick Societies: Responding to the Global Challenge of Chronic Disease (eds. Stuckler, D. & Siegel, K.) 26–62 (Oxford Univ. Press, 2011).

  132. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 14, 32–38 (1985).

    CAS  PubMed  Google Scholar 

  133. Frieden, T. R. A framework for public health action: the health impact pyramid. Am. J. Public Health 100, 590–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  134. Stuckler, D. et al. Comprehensive strategies to reduce the burden of chronic diseases. In Sick Societies: Responding to the Global Challenge of Chronic Disease (eds. Stuckler, D. & Siegel, K.) 87–134 (Oxford Univ. Press, 2011).

  135. Kontis, V. et al. Three public health interventions could save 94 million lives in 25 years global impact assessment analysis. Circulation 140, 715–725 (2019).

    PubMed  PubMed Central  Google Scholar 

  136. European Society of Cardiology. A population-based salt-substitution strategy slashes hypertension risk (ESC, 2019); https://www.escardio.org/Congresses-&-Events/ESC-Congress/Congress-resources/Congress-news/a-population-based-salt-substitution-strategy-slashes-hypertension-risk

  137. European Society of Cardiology. Community-based salt substitution programme lowers blood pressure (ESC, 2019); https://www.escardio.org/The-ESC/Press-Office/Press-releases/community-based-salt-substitution-programme-lowers-blood-pressure

  138. Levy, D., de Almeida, L. M. & Szklo, A. The Brazil SimSmoke policy simulation model: the effect of strong tobacco control policies on smoking prevalence and smoking-attributable deaths in a middle income nation. PLoS Med. 9, e1001336 (2012).

    PubMed  PubMed Central  Google Scholar 

  139. Warner, K. E. Tobacco control policies and their impacts. Past, present, and future. Ann. Am. Thorac. Soc. 11, 227–230 (2014).

    PubMed  Google Scholar 

  140. Reynales-Shigematsu, L. M. et al. Effects of tobacco control policies on smoking prevalence and tobacco-attributable deaths in Mexico: the SimSmoke model. Rev. Panam. Salud Publica 38, 316–325 (2015).

    PubMed  Google Scholar 

  141. Levy, D. T., Benjakul, S., Ross, H. & Ritthiphakdee, B. The role of tobacco control policies in reducing smoking and deaths in a middle income nation: results from the Thailand SimSmoke simulation model. Tob. Control 17, 53–59 (2008).

    CAS  PubMed  Google Scholar 

  142. Colchero, M. A., Rivera-Dommarco, J., Popkin, B. M. & Ng, S. W. In Mexico, evidence of sustained consumer response two years after implementing a sugar-sweetened beverage tax. Health Aff. (Millwood) 36, 564–571 (2017).

    Google Scholar 

  143. Barrientos-Gutiérrez, T., Colchero, M. A., Sánchez-Romero, L. M., Batis, C. & Rivera-Dommarco, J. [Position paper on taxes to non-basic energy-dense foods and sugar-sweetened beverages]. Salud Publica Mex. 60, 586–591 (2018).

  144. Reyes, M. et al. Development of the Chilean front-of-package food warning label. BMC Public Health 19, 906 (2019).

    PubMed  PubMed Central  Google Scholar 

  145. Corvalán, C., Reyes, M., Garmendia, M. L. & Uauy, R. Structural responses to the obesity and non-communicable diseases epidemic: update on the Chilean law of food labelling and advertising. Obes. Rev. 20, 367–374 (2019).

    PubMed  Google Scholar 

  146. Massri, C., Sutherland, S., Källestål, C. & Peña, S. Impact of the food-labeling and advertising law banning competitive food and beverages in Chilean public schools, 2014–2016. Am. J. Public Health 109, 1249–1254 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. Ministerio de Salud Pública. Octógonos para etiquetado de alimentos (Ministerio de Salud Pública, 2018); https://www.gub.uy/ministerio-salud-publica/comunicacion/noticias/octogonos-para-etiquetado-de-alimentos

  148. Ministerio de Salud. Conoce las advertencias publicitarias (octógonos) (Ministerio de Salud Pública, 2019); https://www.gob.pe/1066-ministerio-de-salud-conoce-las-advertencias-publicitarias-octogonos

  149. Quist erg, D. A. et al. Building a data platform for cross-country urban health studies: the SALURBAL study. J. Urban Health 96, 311–337 (2019).

    Google Scholar 

  150. Diez Roux, A. V. et al. A novel international partnership for actionable evidence on urban health in Latin America: LAC‐Urban Health and SALURBAL. Glob. Chall. 3, 1800013 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. World Health Organization. Towards More Physical Activity: Transforming Public Spaces to Promote Physical Activity—a Key Contributor to Achieving the Sustainable Development Goals in Europe (World Health Organization Regional Office for Europe, European Commission, 2017).

  152. Wells, J. C. K. Obesity as malnutrition: the dimensions beyond energy balance. Eur. J. Clin. Minist. de. Salud Pública 67, 507–512 (2013).

    CAS  Google Scholar 

  153. Wallace, C. et al. Dimensions of national culture associated with different trajectories of male and female mean body mass index in countries over 25 years. Obes. Rev. https://doi.org/10.1111/obr.12884 (2019).

    Article  PubMed  Google Scholar 

  154. Vedanthan, R. et al. Innovative approaches to hypertension control in low- and middle-income countries. Cardiol. Clin. 35, 99–115 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Lombard, C. et al. Preventing weight gain in women in rural communities: a cluster randomised controlled Trial. PLoS Med. 13, e1001941 (2016).

    PubMed  PubMed Central  Google Scholar 

  156. Rubinstein, A. et al. Effectiveness of an mHealth intervention to improve the cardiometabolic profile of people with prehypertension in low-resource urban settings in Latin America: a randomised controlled trial. Lancet Diabetes Endocrinol. 4, 52–63 (2016).

    PubMed  Google Scholar 

  157. Carrillo-Larco, R. M. et al. Implementation tells us more beyond pooled estimates: secondary analysis of a multicountry mhealth trial to reduce blood pressure. JMIR Mhealth Uhealth 6, e10226 (2018).

    PubMed  PubMed Central  Google Scholar 

  158. Fottrell, E. et al. Community groups or mobile phone messaging to prevent and control type 2 diabetes and intermediate hyperglycaemia in Bangladesh (DMagic): a cluster-randomised controlled trial. Lancet Diabetes Endocrinol. 7, 200–212 (2019).

    PubMed  PubMed Central  Google Scholar 

  159. Beratarrechea, A. et al. Use of m-Health technology for preventive interventions to tackle cardiometabolic conditions and other non-communicable diseases in Latin America- challenges and opportunities. Prog. Cardiovasc. Dis. 58, 661–673 (2016).

    PubMed  Google Scholar 

  160. Mileski, M., Kruse, C. S., Catalani, J. & Haderer, T. Adopting telemedicine for the self-management of hypertension: systematic review. JMIR Med. Inform. 5, e41 (2017).

    PubMed  PubMed Central  Google Scholar 

  161. Zanaboni, P. & Wootton, R. Adoption of telemedicine: from pilot stage to routine delivery. BMC Med. Inform. Decis. Mak. 12, 1 (2012).

    PubMed  PubMed Central  Google Scholar 

  162. Inglis, S.C. et al. Structured telephone support or telemonitoring programmes for patients with chronic heart failure. Cochrane Database Syst. Rev. (8):CD007228 (2010).

  163. Ekeland, A. G., Bowes, A. & Flottorp, S. Effectiveness of telemedicine: a systematic review of reviews. Int. J. Med. Inform. 79, 736–771 (2010).

    PubMed  Google Scholar 

  164. Academy of Medical Sciences. Multiple Morbidities as a Global Health Challenge (Academy of Medical Sciences, 2015).

  165. Navickas, R., Petric, V.-K., Feigl, A. B. & Seychell, M. Multimorbidity: what do we know? What should we do? J. Comorb. 6, 4–11 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. Hurst, J. R. et al. Global Alliance for Chronic Disease researchers’ statement on multimorbidity. Lancet Glob. Health 6, e1270–e1271 (2018).

    PubMed  Google Scholar 

  167. Woltmann, E. et al. Comparative effectiveness of collaborative chronic care models for mental health conditions across primary, specialty, and behavioral health care settings: systematic review and meta-analysis. Am. J. Psychiatry 169, 790–804 (2012).

    PubMed  Google Scholar 

  168. Diez-Canseco, F. et al. [Integration of mental health and chronic non-communicable diseases in Peru: challenges and opportunities for primary care settings]. Rev. Peru. Med. Exp. Salud Publica 31, 131–136 (2014).

  169. Stein, D. J. et al. Integrating mental health with other non-communicable diseases. Br. Med. J. 364, l295 (2019).

    Google Scholar 

  170. Mounier-Jack, S., Mayhew, S. H. & Mays, N. Integrated care: learning between high-income, and low- and middle-income country health systems. Health Policy Plan. 32(suppl_4), iv6–iv12 (2017).

    PubMed  PubMed Central  Google Scholar 

  171. Druetz, T. Integrated primary health care in low- and middle-income countries: a double challenge. BMC Med. Ethics 19(Suppl 1), 48 (2018).

    PubMed  PubMed Central  Google Scholar 

  172. Lee, E. S. et al. Quality improvement for cardiovascular disease care in low- and middle-income countries: a systematic review. PLoS One 11, e0157036 (2016).

    PubMed  PubMed Central  Google Scholar 

  173. Ojo, T. et al. Feasibility of integrated, multilevel care for cardiovascular diseases (CVD) and HIV in low- and middle-income countries (LMICs): a scoping review. PLoS One 14, e0212296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. World Health Organization. Package of Essential Noncommunicable (PEN) Disease Interventions for Primary Health Care in Low-resource Settings (World Health Organization, 2010).

  175. Hui, R. L. et al. Evaluation of a pharmacist-managed antidiabetic deprescribing program in an integrated health care system. J. Manag. Care Spec. Pharm. 25, 927–934 (2019).

    PubMed  Google Scholar 

  176. Diez-Canseco, F. et al. Integration of a technology-based mental health screening program into routine practices of primary health care services in Peru (The Allillanchu Project): development and implementation. J. Med. Internet Res. 20, e100 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. Menezess, P. R., Araya, R., Miranda, J., Mohr, D. C. & Price, S. N. The Latin American treatment and innovation network in mental health h (LATINMH): rationale and scope. Rev. Fac. Cien. Med. Univ. Nac. Cordoba 72, 321–330 (2015).

    PubMed  Google Scholar 

  178. Peiris, D. et al. SMARThealth India: a stepped-wedge, cluster randomised controlled trial of a community health worker managed mobile health intervention for people assessed at high cardiovascular disease risk in rural India. PLoS One 14, e0213708 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Limbani, F., Thorogood, M., Gómez-Olivé, F. X., Kabudula, C. & Goudge, J. Task shifting to improve the provision of integrated chronic care: realist evaluation of a lay health worker intervention in rural South Africa. BMJ Glob. Health 4, e001084 (2019).

    PubMed  PubMed Central  Google Scholar 

  180. Tian, M. et al. A cluster-randomized, controlled trial of a simplified multifaceted management program for individuals at high cardiovascular risk (SimCard Trial) in rural Tibet, China, and Haryana, India. Circulation 132, 815–824 (2015).

    PubMed  PubMed Central  Google Scholar 

  181. He, J. et al. Effect of a community health worker-led multicomponent intervention on blood pressure control in low-income patients in Argentina: a randomized clinical trial. J. Am. Med. Assoc. 318, 1016–1025 (2017).

    Google Scholar 

  182. Egbujie, B. A. et al. Role of community health workers in type 2 diabetes mellitus self-management: a scoping review. PLoS One 13, e0198424 (2018).

    PubMed  PubMed Central  Google Scholar 

  183. Ogedegbe, G. et al. Health insurance coverage with or without a nurse-led task shifting strategy for hypertension control: a pragmatic cluster randomized trial in Ghana. PLoS Med. 15, e1002561 (2018).

    PubMed  PubMed Central  Google Scholar 

  184. Joshi, R. et al. Task-shifting for cardiovascular risk factor management: lessons from the Global Alliance for Chronic Diseases. BMJ Glob. Health 3(suppl. 3), e001092 (2018).

    PubMed  PubMed Central  Google Scholar 

  185. Beratarrechea, A. et al. Using mHealth tools to improve access and coverage of people with public health insurance and high cardiovascular disease risk in Argentina: a pragmatic cluster randomized trial. J. Am. Heart Assoc. 8, e011799 (2019).

    PubMed  PubMed Central  Google Scholar 

  186. Ruby, A., Knight, A., Perel, P., Blanchet, K. & Roberts, B. The effectiveness of interventions for non-communicable diseases in humanitarian crises: a systematic review. PLoS One 10, e0138303 (2015).

    PubMed  PubMed Central  Google Scholar 

  187. Jobanputra, K., Boulle, P., Roberts, B. & Perel, P. Three steps to improve management of noncommunicable diseases in humanitarian crises. PLoS Med. 13, e1002180 (2016).

    PubMed  PubMed Central  Google Scholar 

  188. Demaio, A., Jamieson, J., Horn, R., de Courten, M. & Tellier, S. Non-communicable diseases in emergencies: a call to action. PLoS Curr. https://doi.org/10.1371%2Fcurrents.dis.53e08b951d59ff913ab8b9bb51c4d0de (2013).

  189. Swinburn, B. A. et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet Commission report. Lancet 393, 791–846 (2019).

    PubMed  Google Scholar 

  190. Friel, S. et al. Climate change, noncommunicable diseases, and development: the relationships and common policy opportunities. Annu. Rev. Public Health 32, 133–147 (2011).

    CAS  PubMed  Google Scholar 

  191. Thomson, D. R. et al. Extending data for urban health decision-making: a menu of new and potential neighborhood-level health determinants datasets in LMICs. J. Urban Health 96, 514–536 (2019).

    PubMed  PubMed Central  Google Scholar 

  192. Johnson, R. C. & Schoeni, R. F. Early-life origins of adult disease: national longitudinal population-based study of the United States. Am. J. Public Health 101, 2317–2324 (2011).

    PubMed  PubMed Central  Google Scholar 

  193. Wang, G., Walker, S. O., Hong, X., Bartell, T. R. & Wang, X. Epigenetics and early life origins of chronic noncommunicable diseases. J. Adolesc. Health 52(Suppl 2), S14–S21 (2013).

    PubMed  Google Scholar 

  194. World Health Organization. Adolescent responsive health systems (World Health Organization, 2015, accessed 26 September 2019); https://www.who.int/maternal_child_adolescent/topics/adolescence/health_services/en/.

  195. Mikkelsen, B. et al. Life course approach to prevention and control of non-communicable diseases. Br. Med. J. 364, l257 (2019).

    Google Scholar 

  196. Laski, L. Expert Consultative Group for Every Woman Every Child on Adolescent Health. Realising the health and wellbeing of adolescents. Br. Med. J. 351, h4119 (2015).

    Google Scholar 

  197. World Health Organization. Global strategy on diet, physical activity and health. World Health Organization (2004, accessed 2 July 2019); https://www.who.int/dietphysicalactivity/strategy/eb11344/strategy_english_web.pdf

  198. Diez Roux, A. V. Complex systems thinking and current impasses in health disparities research. Am. J. Public Health 101, 1627–1634 (2011).

    PubMed  PubMed Central  Google Scholar 

  199. Geng, E. H., Peiris, D. & Kruk, M. E. Implementation science: relevance in the real world without sacrificing rigor. PLoS Med. 14, e1002288 (2017).

    PubMed  PubMed Central  Google Scholar 

  200. Huffman, M. D., Labarthe, D. R. & Yusuf, S. Global cardiovascular research training for implementation science, health systems research, and health policy research. J. Am. Coll. Cardiol. 65, 1371–1372 (2015).

    PubMed  Google Scholar 

  201. Basu, S. & Andrews, J. Complexity in mathematical models of public health policies: a guide for consumers of models. PLoS Med. 10, e1001540 (2013).

    PubMed  PubMed Central  Google Scholar 

  202. Metcalf, C. J. E., Edmunds, W. J. & Lessler, J. Six challenges in modelling for public health policy. Epidemics 10, 93–96 (2015).

    CAS  PubMed  Google Scholar 

  203. Carey, G. et al. Systems science and systems thinking for public health: a systematic review of the field. BMJ Open 5, e009002 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. Peters, D. H., Peters, M. A., Wickramasinghe, K., Osewe, P. L. & Davidson, P. M. Asking the right question: implementation research to accelerate national non-communicable disease responses. Br. Med. J. 365, l1868 (2019).

    Google Scholar 

  205. Yapa, H. M. & Bärnighausen, T. Implementation science in resource-poor countries and communities. Implement. Sci. 13, 154 (2018).

    PubMed  PubMed Central  Google Scholar 

  206. Pan American Health Organization & Organisation for Economic Co-operation and Development. Applying Modeling to Improve Health and Economic Policy Decisions in the Americas The Case of Noncommunicable Diseases: The Case of Noncommunicable Diseases (PAHO, 2015).

  207. Collins, T. E. et al. Time to align: development cooperation for the prevention and control of non-communicable diseases. Br. Med. J. 366, l4499 (2019).

    Google Scholar 

  208. Kuruvilla, S. et al. Success factors for reducing maternal and child mortality. Bull. World Health Organ. 92, 533–44B (2014).

    PubMed  PubMed Central  Google Scholar 

  209. Wells, J. C. K. The capacity-load model of non-communicable disease risk: understanding the effects of child malnutrition, ethnicity and the social determinants of health. Eur. J. Clin. Nutr. 72, 688–697 (2018).

    PubMed  Google Scholar 

  210. United Nations. Health. United Nations Sustainable Development Goals (UN, accessed 25 September 2019); https://www.un.org/sustainabledevelopment/health/

  211. World Health Organization. Stronger collaboration. in Better Health: Global Action Plan for Healthy Lives and Well-being for All (World Health Organization, 2019).

  212. Krishna, B. et al. Tackling the health burden of air pollution in South Asia. Br. Med. J. 359, j5209 (2017).

    Google Scholar 

  213. Su, T.-C., Chen, S.-Y. & Chan, C.-C. Progress of ambient air pollution and cardiovascular disease research in Asia. Prog. Cardiovasc. Dis. 53, 369–378 (2011).

    PubMed  Google Scholar 

  214. Chakraborty, D. & Mondal, N. K. Hypertensive and toxicological health risk among women exposed to biomass smoke: A rural Indian scenario. Ecotoxicol. Environ. Saf. 161, 706–714 (2018).

    CAS  PubMed  Google Scholar 

  215. India State-Level Disease Burden Initiative CVD Collaborators. The changing patterns of cardiovascular diseases and their risk factors in the states of India: the Global Burden of Disease Study 1990-2016. Lancet Glob. Health 6, e1339–e1351 (2018).

  216. Yamamoto, S. S., Phalkey, R. & Malik, A. A. A systematic review of air pollution as a risk factor for cardiovascular disease in South Asia: limited evidence from India and Pakistan. Int. J. Hyg. Environ. Health 217, 133–144 (2014).

    CAS  PubMed  Google Scholar 

  217. Jacob, A. M., Datta, M., Kumpatla, S., Selvaraj, P. & Viswanthan, V. Prevalence of diabetes mellitus and exposure to suspended particulate matter. J. Health Pollut. 9, 190608 (2019).

    PubMed  PubMed Central  Google Scholar 

  218. Pande, J. N. et al. Outdoor air pollution and emergency room visits at a hospital in Delhi. Indian J. Chest Dis. Allied Sci. 44, 13–19 (2002).

    CAS  PubMed  Google Scholar 

  219. Shi, Y. et al. Long-term trends and spatial patterns of PM2.5-induced premature mortality in South and Southeast Asia from 1999 to 2014. Sci. Total Environ. 631-632, 1504–1514 (2018).

    CAS  PubMed  Google Scholar 

  220. Curto, A. et al. Ambient particulate air pollution and blood pressure in peri-urban India. Epidemiology 30, 492–500 (2019).

    PubMed  PubMed Central  Google Scholar 

  221. Dutta, A., Ray, M. R. & Banerjee, A. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels. Toxicol. Appl. Pharmacol. 261, 255–262 (2012).

    CAS  PubMed  Google Scholar 

  222. Khafaie, M. A. et al. Particulate matter and markers of glycemic control and insulin resistance in type 2 diabetic patients: result from Wellcome Trust Genetic study. J. Expo. Sci. Environ. Epidemiol. 28, 328–336 (2018).

    CAS  PubMed  Google Scholar 

  223. Khafaie, M. A. et al. Systemic inflammation (C-reactive protein) in type 2 diabetic patients is associated with ambient air pollution in Pune City, India. Diabetes Care 36, 625–630 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Balakrishnan, K. et al. Exposures to fine particulate matter (PM2.5) and birthweight in a rural-urban, mother-child cohort in Tamil Nadu, India. Environ. Res. 161, 524–531 (2018).

    CAS  PubMed  Google Scholar 

  225. Epstein, M. B. et al. Household fuels, low birth weight, and neonatal death in India: the separate impacts of biomass, kerosene, and coal. Int. J. Hyg. Environ. Health 216, 523–532 (2013).

    CAS  PubMed  Google Scholar 

  226. Spears, D. et al. The association of early-life exposure to ambient PM2.5 and later-childhood height-for-age in India: an observational study. Environ. Health 18, 62 (2019).

    PubMed  PubMed Central  Google Scholar 

  227. Pucher, J., Peng, Z., Mittal, N., Zhu, Y. & Korattyswaroopam, N. Urban transport trends and policies in China and India: impacts of rapid economic growth. Transp. Rev. 27, 379–410 (2007).

    Google Scholar 

  228. Groenewald, P. et al. Local-level mortality surveillance in resource-limited settings: a case study of Cape Town highlights disparities in health. Bull. World Health Organ. 88, 444–451 (2010).

    PubMed  PubMed Central  Google Scholar 

  229. Battersby, J. & Crush, J. Africa’s urban food deserts. Urban Forum 25, 143–151 (2014).

    Google Scholar 

  230. Smit, W. et al. Making unhealthy places: The built environment and non-communicable diseases in Khayelitsha, Cape Town. Health Place 39, 196–203 (2016).

    PubMed  Google Scholar 

  231. Hunter-Adams, J., Battersby, J. & Oni, T. Food insecurity in relation to obesity in peri-urban Cape Town, South Africa: implications for diet-related non-communicable disease. Appetite 137, 244–249 (2019).

    PubMed  Google Scholar 

  232. World Health Organization. Alcohol: key facts (World Health Organization, accessed 26 September 2019); https://www.who.int/news-room/fact-sheets/detail/alcohol

  233. World Health Organization. Global Strategy to Reduce the Harmful Use of Alcohol (World Health Organization, 2010).

  234. World Health Organization. Global Status Report on Alcohol and Health 2018 (World Health Organization, 2018).

  235. World Health Organization. Global Status Report on Alcohol and Health 2011 (World Health Organization, 2011).

  236. Hawkins, B., Holden, C., Eckhardt, J. & Lee, K. Reassessing policy paradigms: A comparison of the global tobacco and alcohol industries. Glob. Public Health 13, 1–19 (2018).

    PubMed  Google Scholar 

  237. Worldwide Brewing Alliance. Global social responsibility initiatives (Worldwide Brewing Alliance, 2007). https://worldwidebrewingalliance.org/docs/publications/WBA_Global_Social_Responsibility_Initiatives_2007.pdf

  238. Stenius, K. & Babor, T. F. The alcohol industry and public interest science. Addiction 105, 191–198 (2010).

    PubMed  Google Scholar 

  239. INEBRIA. 12th Conference of INEBRIA, 24–25 September 2015, Atlanta, Georgia (INEBRIA, accessed 26 September 2019); http://inebria.net/meetings-and-activities/conference/past/12th-conference-of-inebria-24th-25th-september-2015-atlanta-georgia/

  240. Jernigan, D. H. Global alcohol producers, science, and policy: the case of the International Center for Alcohol Policies. Am. J. Public Health 102, 80–89 (2012).

    PubMed  PubMed Central  Google Scholar 

  241. Esser, M. B. & Jernigan, D. H. Multinational alcohol market development and public health: Diageo in India. Am. J. Public Health 105, 2220–2227 (2015).

    PubMed  PubMed Central  Google Scholar 

  242. Babor, T. F. & Robaina, K. Public health, academic medicine, and the alcohol industry’s corporate social responsibility activities. Am. J. Public Health 103, 206–214 (2013).

    PubMed  PubMed Central  Google Scholar 

  243. Diageo. Our Plan W programme continues to be a success (Diageo, accessed 26 September 2019); https://www.diageo.com/en/news-and-media/features/our-plan-w-programme-continues-to-be-a-success/

Download references

Acknowledgements

J.J.M. conceived the idea of linking child survival and adult population handicaps that will affect responses to NCDs and climate change while supported through an Erasmus Mundus Scholar at KIT Royal Tropical Institute, Amsterdam, in 2013. This idea was further elaborated through interactions with W. Pan, D. Beran, and F. Maldonado, among others. J.J.M. acknowledges having received support from the Alliance for Health Policy and Systems Research (HQHSR1206660), the Bernard Lown Scholars in Cardiovascular Health Program at Harvard T.H. Chan School of Public Health (BLSCHP-1902), Bloomberg Philanthropies, FONDECYT via CIENCIACTIVA/CONCYTEC, British Council, British Embassy and Newton-Paulet Fund (223-2018, 224-2018), DFID/MRC/Wellcome Global Health Trials (MR/M007405/1), Fogarty International Center (R21TW009982, D71TW010877), Grand Challenges Canada (0335-04), International Development Research Center Canada (IDRC 106887, 108167), Inter-American Institute for Global Change Research (IAI CRN3036), Medical Research Council (MR/P008984/1, MR/P024408/1, MR/P02386X/1), US National Cancer Institute (1P20CA217231), National Heart, Lung and Blood Institute (HHSN268200900033C, 5U01HL114180, 1UM1HL134590), National Institute of Mental Health (1U19MH098780), Swiss National Science Foundation (40P740-160366), Wellcome (074833/Z/04/Z, 093541/Z/10/Z, 107435/Z/15/Z, 103994/Z/14/Z, 205177/Z/16/Z, 214185/Z/18/Z) and the World Diabetes Foundation (WDF15-1224). T.B.-G. was supported by Bloomberg Philanthropies, the Bernard Lown Scholars in Cardiovascular Health Program at Harvard T.H. Chan School of Public Health, the “Fondo Sectorial en Investigación en Salud y Seguridad Social” from the National Council for Science and Technology of Mexico (CONACYT-FOSSIS-202671) and Wellcome (205177/Z/16/Z). C.C. receives a salary as assistant professor at INTA, University of Chile. A.A.H. did not receive external funding for this work but has internal support as director of the Center on Commercial Determinants of Health, Milken Institute School of Public Health, George Washington University. He has received support from numerous agencies including current funding from the US National Institutes of Health’s Fogarty International Center. M.L.-P. receives funding from the Swiss Excellence Government Scholarship (2018.0698). T.O. is supported by the US National Institute for Health Research (NIHR) Global Health Research Group and Network on Diet and Activity. The views expressed in this publication are those of the author and not necessarily those of the National Health Service, the NIHR or the Department of Health. Funding from NIHR (16/137/34) is gratefully acknowledged. T.O. is also supported by the Stellenbosch Institute for Advanced Study Iso Lomso Fellowship and LIRA 2030 Africa Programme (LIRA2030-GR06/18), implemented by the International Science Council (ISC) in partnership with the Network of African Science Academies (NASAC) with support from the Swedish International Development Cooperation Agency (Sida). J.C.K.W. receives a salary as a professor at University College London’s Great Ormond Street Institute of Child Health. The authors acknowledge N. Paichadze and I. Bari from the Milken Institute School of Public Health, George Washington University, for their support with the case study on alcohol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jaime Miranda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Hannah Stower was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, J.J., Barrientos-Gutiérrez, T., Corvalan, C. et al. Understanding the rise of cardiometabolic diseases in low- and middle-income countries. Nat Med 25, 1667–1679 (2019). https://doi.org/10.1038/s41591-019-0644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-019-0644-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing