Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comprehensive mapping of neurotransmitter networks by MALDI–MS imaging

Abstract

We present a mass spectrometry imaging (MSI) approach for the comprehensive mapping of neurotransmitter networks in specific brain regions. Our fluoromethylpyridinium-based reactive matrices facilitate the covalent charge-tagging of molecules containing phenolic hydroxyl and/or primary or secondary amine groups, including dopaminergic and serotonergic neurotransmitters and their associated metabolites. These matrices improved the matrix-assisted laser desorption/ionization (MALDI)–MSI detection limit toward low-abundance neurotransmitters and facilitated the simultaneous imaging of neurotransmitters in fine structures of the brain at a lateral resolution of 10 µm. We demonstrate strategies for the identification of unknown molecular species using the innate chemoselectivity of the reactive matrices and the unique isotopic pattern of a brominated reactive matrix. We illustrate the capabilities of the developed method on Parkinsonian brain samples from human post-mortem tissue and animal models. The direct imaging of neurotransmitter systems provides a method for exploring how various neurological diseases affect specific brain regions through neurotransmitter modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polyphenylated fluoromethylpyridinium reactive matrix enables improved detection and high lateral resolution imaging of neurotransmitters and their metabolites.
Fig. 2: Identification of unknown compounds using different alkylpyridinium reactive matrices (FMP-10 and FMP-9), a brominated reactive matrix (FMP-8), and/or multiple orders of derivatization.
Fig. 3: MALDI-MS images of neurotransmitters and metabolites acquired from a tissue section of a unilateral 6-OHDA lesioned Parkinson’s disease model rat treated with L-DOPA.
Fig. 4: MALDI-MS images and relative quantitation of neurotransmitters and metabolites acquired from a tissue section of an L-DOPA-d3 treated unilateral 6-OHDA lesioned Parkinson’s disease model rat.
Fig. 5: MALDI–MS images of neurotransmitters and other biologically active substances in coronal primate Parkinson’s disease model brain tissue sections.
Fig. 6: MALDI-MS images of neurotransmitters and associated metabolites in the striatum of a parkinsonian human brain tissue section.

Similar content being viewed by others

Data availability

The MALDI–MSI datasets that support the findings of this study are available from the corresponding author upon request. NMR data for all compounds is available in the Supplementary Note. MS and MS/MS spectra for derivatized standards are available in the supplementary information. Source data are available online for Fig. 4.

Code availability

Quantitative data analyses were performed using the msIQuant imaging software (v.2.0.1.15). The software is freely available at https://ms-imaging.org/wp/paquan/.

References

  1. Ng, J., Papandreou, A., Heales, S. J. & Kurian, M. A. Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nat. Rev. Neurol. 11, 567–584 (2015).

    Article  CAS  Google Scholar 

  2. Falck, B., Hillarp, N. A., Thieme, G. & Torp, A. Fluorescence of catechol amines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).

    Article  CAS  Google Scholar 

  3. Jones, B. E. & Beaudet, A. Distribution of acetylcholine and catecholamine neurons in the cat brainstem: a choline acetyltransferase and tyrosine hydroxylase immunohistochemical study. J. Comp. Neurol. 261, 15–32 (1987).

    Article  CAS  Google Scholar 

  4. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).

    Article  CAS  Google Scholar 

  5. Caprioli, R. M., Farmer, T. B. & Gile, J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI–TOF MS. Anal. Chem. 69, 4751–4760 (1997).

    Article  CAS  Google Scholar 

  6. Norris, J. L. & Caprioli, R. M. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem. Rev. 113, 2309–2342 (2013).

    Article  CAS  Google Scholar 

  7. Kompauer, M., Heiles, S. & Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 14, 90–96 (2017).

    Article  CAS  Google Scholar 

  8. Passarelli, M. K. et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power. Nat. Methods 14, 1175–1183 (2017).

    Article  CAS  Google Scholar 

  9. Zenobi, R. & Knochenmuss, R. Ion formation in MALDI mass spectrometry. Mass Spectrom. Rev. 17, 337–366 (1998).

    Article  CAS  Google Scholar 

  10. Shariatgorji, M. et al. Direct targeted quantitative molecular imaging of neurotransmitters in brain tissue sections. Neuron 84, 697–707 (2014).

    Article  CAS  Google Scholar 

  11. Quirke, J. M. E., Adams, C. L. & Vanberkel, G. J. Chemical derivatization for electrospray-ionization mass-spectrometry 1. alkyl-halides, alcohols, phenols, thiols, and amines. Anal. Chem. 66, 1302–1315 (1994).

    Article  CAS  Google Scholar 

  12. Bergh, M. S., Bogen, I. L., Lundanes, E. & Oiestad, A. M. L. Validated methods for determination of neurotransmitters and metabolites in rodent brain tissue and extracellular fluid by reversed phase UHPLC–MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1028, 120–129 (2016).

    Article  CAS  Google Scholar 

  13. Bjorklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30, 194–202 (2007).

    Article  Google Scholar 

  14. Eisenhofer, G., Kopin, I. J. & Goldstein, D. S. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharm. Rev. 56, 331–349 (2004).

    Article  CAS  Google Scholar 

  15. Tank, A. W. & Lee Wong, D. Peripheral and central effects of circulating catecholamines. Compr. Physiol. 5, 1–15 (2015).

    PubMed  Google Scholar 

  16. Breese, G. R. & Traylor, T. D. Effect of 6-hydroxydopamine on brain norepinephrine and dopamine evidence for selective degeneration of catecholamine neurons. J. Pharm. Exp. Ther. 174, 413–420 (1970).

    CAS  Google Scholar 

  17. Herr, N. R. et al. In vivo voltammetry monitoring of electrically evoked extracellular norepinephrine in subregions of the bed nucleus of the stria terminalis. J. Neurophysiol. 107, 1731–1737 (2012).

    Article  Google Scholar 

  18. Chiu, A. S., Godse, D. D. & Warsh, J. J. Determination of brain regional normetanephrine levels by liquid chromatography with electrochemical detection (LC–EC). Prog. Neuropsychopharmacol. 5, 559–563 (1981).

    Article  CAS  Google Scholar 

  19. Polotis, M. & Niccolini, F. Serotonin in Parkinson’s disease. Behav. Brain Res. 277, 136–145 (2015).

    Article  Google Scholar 

  20. Albin, R. L. Neurobiology of basal ganglia and Tourette syndrome: striatal and dopamine function. Adv. Neurol. 99, 99–106 (2006).

    PubMed  Google Scholar 

  21. Kita, H., Chiken, S., Tachibana, Y. & Nambu, A. Serotonin modulates pallidal neuronal activity in the awake monkey. J. Neurosci. 27, 75–83 (2007).

    Article  CAS  Google Scholar 

  22. Kveder, S., Iskric, S. & Keglevic, D. 5-Hydroxytryptophol—a metabolite of 5-hydroxytryptamine in rats. Biochem. J. 85, 447 (1962).

    Article  CAS  Google Scholar 

  23. Panula, P., Revuelta, A. V., Cheney, D. L., Wu, J. Y. & Costa, E. An immunohistochemical study on the location of GABAergic neurons in rat septum. J. Comp. Neurol. 222, 69–80 (1984).

    Article  CAS  Google Scholar 

  24. Yasumi, M., Sato, K., Shimada, S., Nishimura, M. & Tohyama, M. Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: comparison with glutamic acid decarboxylase67 (GAD67) mRNA localization. Brain Res. Mol. Brain Res. 44, 205–218 (1997).

    Article  CAS  Google Scholar 

  25. Wang, H., Katz, J., Dagostino, P. & Soghomonian, J. J. Unilateral 6-hydroxydopamine lesion of dopamine neurons and subchronic l-DOPA administration in the adult rat alters the expression of the vesicular GABA transporter in different subsets of striatal neurons and in the substantia nigra, pars reticulata. Neuroscience 145, 727–737 (2007).

    Article  CAS  Google Scholar 

  26. Kageyama, T. et al. The 4F2hc/LAT1 complex transports l-DOPA across the blood–brain barrier. Brain Res. 879, 115–121 (2000).

    Article  CAS  Google Scholar 

  27. Boado, R. J., Li, J. Y., Nagaya, M., Zhang, C. & Pardridge, W. M. Selective expression of the large neutral amino acid transporter at the blood–brain barrier. Proc. Natl Acad. Sci. USA 96, 12079–12084 (1999).

    Article  CAS  Google Scholar 

  28. Murata, M. Pharmacokinetics of l-dopa—special reference to food and aging. J. Neurol. 253, 47–52 (2006).

    Article  Google Scholar 

  29. Meissner, W. et al. Time-course of nigrostriatal degeneration in a progressive MPTP-lesioned macaque model of Parkinson’s disease. Mol. Neurobiol. 28, 209–218 (2003).

    Article  CAS  Google Scholar 

  30. Bezard, E., Brotchie, J. M. & Gross, C. E. Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat. Rev. Neurosci. 2, 577–588 (2001).

    Article  CAS  Google Scholar 

  31. Bagley, M. C., Ekelof, M., Rock, K., Patisaul, H. & Muddiman, D. C. IR-MALDESI mass spectrometry imaging of underivatized neurotransmitters in brain tissue of rats exposed to tetrabromobisphenol A. Anal. Bioanal. Chem. 410, 7979–7986 (2018).

    Article  CAS  Google Scholar 

  32. Fernandes, A. M. et al. Direct visualization of neurotransmitters in rat brain slices by desorption electrospray ionization mass spectrometry imaging (DESI–MS). J. Am. Soc. Mass Spectrom. 27, 1944–1951 (2016).

    Article  CAS  Google Scholar 

  33. Esteve, C., Tolner, E. A., Shyti, R., van den Maagdenberg, A. M. & McDonnell, L. A. Mass spectrometry imaging of amino neurotransmitters: a comparison of derivatization methods and application in mouse brain tissue. Metabolomics 12, 30 (2016).

    Article  Google Scholar 

  34. Kaya, I. et al. On-tissue chemical derivatization of catecholamines using 4-(N-Methyl)pyridinium boronic acid for ToF-SIMS and LDI-ToF mass spectrometry imaging. Anal. Chem. 90, 13580–13590 (2018).

    Article  CAS  Google Scholar 

  35. Ciliax, B. J. et al. The dopamine transporter: immunochemical characterization and localization in brain. J. Neurosci. 15, 1714–1723 (1995).

    Article  CAS  Google Scholar 

  36. Ramsay, W. J. et al. Designed enclosure enables guest binding within the 4200 Å3 cavity of a self-assembled cube. Angew. Chem. Int. Ed. Engl. 54, 5636–5640 (2015).

    Article  CAS  Google Scholar 

  37. Zhang, X., Andren, P. E., Chergui, K. & Svenningsson, P. Neurokinin B/NK3 receptors exert feedback inhibition on l-DOPA actions in the 6-OHDA lesion rat model of Parkinson’s disease. Neuropharmacology 54, 1143–1152 (2008).

    Article  CAS  Google Scholar 

  38. Fernagut, P. O. et al. Dopamine transporter binding is unaffected by l-DOPA administration in normal and MPTP-treated monkeys. PLoS One 5, e14053 (2010).

    Article  Google Scholar 

  39. Porras, G. et al. PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. J. Clin. Invest 122, 3977–3989 (2012).

    Article  CAS  Google Scholar 

  40. Santini, E. et al. Distinct changes in cAMP and extracellular signal-regulated protein kinase signalling in l-DOPA-induced dyskinesia. PLoS One 5, e12322 (2010).

    Article  Google Scholar 

  41. Bezard, E., Imbert, C., Deloire, X., Bioulac, B. & Gross, C. E. A chronic MPTP model reproducing the slow evolution of Parkinson’s disease: evolution of motor symptoms in the monkey. Brain Res. 766, 107–112 (1997).

    Article  CAS  Google Scholar 

  42. Bezard, E. et al. Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. J. Neurosci. 21, 6853–6861 (2001).

    Article  CAS  Google Scholar 

  43. Bezard, E., Ravenscroft, P., Gross, C. E., Crossman, A. R. & Brotchie, J. M. Upregulation of striatal preproenkephalin gene expression occurs before the appearance of parkinsonian signs in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Neurobiol. Dis. 8, 343–350 (2001).

    Article  CAS  Google Scholar 

  44. Ahmed, M. R. et al. Lentiviral overexpression of GRK6 alleviates l-DOPA-induced dyskinesia in experimental Parkinson’s disease. Sci. Transl. Med 2, 28ra28 (2010).

    Article  Google Scholar 

  45. Fasano, S. et al. Inhibition of Ras–guanine nucleotide-releasing factor 1 (Ras–GRF1) signaling in the striatum reverts motor symptoms associated with L-dopa-induced dyskinesia. Proc. Natl Acad. Sci. USA 107, 21824–21829 (2010).

    Article  CAS  Google Scholar 

  46. Munoz, A. et al. Combined 5-HT1A and 5-HT1B receptor agonists for the treatment of l-DOPA-induced dyskinesia. Brain 131, 3380–3394 (2008).

    Article  Google Scholar 

  47. Porras, G., Li, Q. & Bezard, E. Modeling Parkinson’s disease in primates: the MPTP model. Cold Spring Harb. Perspect. Med. 2, a009308 (2012).

    Article  Google Scholar 

  48. Kallback, P., Nilsson, A., Shariatgorji, M. & Andren, P. E. msIQuant—quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88, 4346–4353 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swedish Brain Foundation (grant FO2018-0292 to P.E.A.), the Swedish Foundation for Strategic Research (grant RIF14-0078 to P.E.A), the European FP7 ITN Community’s Seventh Framework Program ARIADME (grant 607517 to P.E.A.), the Swedish Research Council, Medicine and Health (grant 2018–03320 to P.E.A.), the Swedish Research Council, Natural and Engineering Science (grant 2018–05501 to P.E.A. and 2018–05133 to L.R.O.) and the Science for Life Laboratory (to P.E.A.). Confocal microscope images were acquired at the BioVis core facility at Uppsala University with help of the BioVis staff. We thank M. Witt for support using the 12T FTICR MS instrument and S. Dengler for experimental assistance.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and A.N. conceived the methodology, designed experiments, acquired, analyzed and interpreted data, and wrote the manuscript; E.F. acquired and analyzed data and wrote part of the manuscript; T.V. acquired and analyzed data; P.K. analyzed data; L.K. and J.S. synthesized the reactive matrices; I.M. and X.Z. performed animal experiments and provided tissue samples; E.B. and P.S. provided tissue samples, supervised animal experiments and edited the manuscript; L.R.O. conceived the methodology, designed experiments, synthesized the reactive matrices, interpreted data and edited the manuscript; P.E.A. conceived the methodology, designed experiments, interpreted data, wrote the manuscript and is principal investigator for the grants that fund this research.

Corresponding authors

Correspondence to Luke R. Odell or Per E. Andrén.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nina Vogt and Allison Doerr were the primary editors on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Supplementary Tables 1–2

Reporting Summary

Supplementary Note

Supplementary Video

MALDI-MS imaging of the nigrostriatal dopaminergic pathway. The nigrostriatal pathway is visualized changing the color scaling for ion intensity of the FMP-10 derivatized DA signal (m/z 674.28). MALDI-MSI experiment was replicated four times independently from different animals with similar results.

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariatgorji, M., Nilsson, A., Fridjonsdottir, E. et al. Comprehensive mapping of neurotransmitter networks by MALDI–MS imaging. Nat Methods 16, 1021–1028 (2019). https://doi.org/10.1038/s41592-019-0551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-019-0551-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing