Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The next generation of approaches to investigate the link between synaptic plasticity and learning

Abstract

Activity-dependent synaptic plasticity has since long been proposed to represent the subcellular substrate of learning and memory, one of the most important behavioral processes through which we adapt to our environment. Despite the undisputed importance of synaptic plasticity for brain function, its exact contribution to learning processes in the context of cellular and connectivity modifications remains obscure. Causally bridging synaptic and behavioral modifications indeed remains limited by the available tools to measure and control synaptic strength and plasticity in vivo under behaviorally relevant conditions. After a brief summary of the current state of knowledge of the links between synaptic plasticity and learning, we will review and discuss the available and desired tools to progress in this endeavor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of the synapse, illustrating key functional and molecular steps that allow observing and acting on SP.
Fig. 2: Schematic showing state-of-the-art strategies allowing specific and acute control of synaptic strength in vivo.

Similar content being viewed by others

References

  1. Takeuchi, T., Duszkiewicz, A. J. & Morris, R. G. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos. Trans. R. Soc. Lond. B 369, 20130288 (2013).

    Google Scholar 

  2. Martin, S. J. & Morris, R. G. New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12, 609–636 (2002).

    CAS  PubMed  Google Scholar 

  3. Collingridge, G. L., Kehl, S. J. & McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J. Physiol. (Lond.) 334, 33–46 (1983).

    CAS  Google Scholar 

  4. Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-d-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    CAS  PubMed  Google Scholar 

  5. Bliss, T. V. & Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. (Lond.) 232, 331–356 (1973).

    CAS  Google Scholar 

  6. Silva, A. J., Paylor, R., Wehner, J. M. & Tonegawa, S. Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992).

    CAS  PubMed  Google Scholar 

  7. Silva, A. J., Stevens, C. F., Tonegawa, S. & Wang, Y. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 201–206 (1992).

    CAS  PubMed  Google Scholar 

  8. Lisman, J. Criteria for identifying the molecular basis of the engram (CaMKII, PKMzeta). Mol. Brain 10, 55 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. Whitlock, J. R., Heynen, A. J., Shuler, M. G. & Bear, M. F. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 (2006).

    CAS  PubMed  Google Scholar 

  10. Ryan, T. J., Roy, D. S., Pignatelli, M., Arons, A. & Tonegawa, S. Memory. Engram cells retain memory under retrograde amnesia. Science 348, 1007–1013 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    CAS  PubMed  Google Scholar 

  12. Nabavi, S. et al. Engineering a memory with LTD and LTP. Nature 511, 348–352 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tonegawa, S., Morrissey, M. D. & Kitamura, T. The role of engram cells in the systems consolidation of memory. Nat. Rev. Neurosci. 19, 485–498 (2018).

    CAS  PubMed  Google Scholar 

  14. Rao-Ruiz, P., Yu, J., Kushner, S. A. & Josselyn, S. A. Neuronal competition: microcircuit mechanisms define the sparsity of the engram. Curr. Opin. Neurobiol. 54, 163–170 (2019).

    CAS  PubMed  Google Scholar 

  15. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Han, J. H. et al. Selective erasure of a fear memory. Science 323, 1492–1496 (2009).

    CAS  PubMed  Google Scholar 

  17. Bi, G. Q. & Poo, M. M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    CAS  PubMed  Google Scholar 

  19. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lüscher, C. & Malenka, R. C. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 4, a005710 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Seibt, J. & Frank, M. G. Primed to sleep: the dynamics of synaptic plasticity across brain states. Front. Syst. Neurosci. 13, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. He, K. et al. Distinct eligibility traces for LTP and LTD in cortical synapses. Neuron 88, 528–538 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zarnadze, S. et al. Cell-specific synaptic plasticity induced by network oscillations. eLife 5, e14912 (2016).

    PubMed  PubMed Central  Google Scholar 

  26. Trimper, J. B., Galloway, C. R., Jones, A. C., Mandi, K. & Manns, J. R. Gamma oscillations in rat hippocampal subregions dentate gyrus, CA3, CA1, and subiculum underlie associative memory encoding. Cell Rep. 21, 2419–2432 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Larson, J., Munkácsy, E. & Theta-burst, L. T. P. Brain Res. 1621, 38–50 (2015).

    CAS  PubMed  Google Scholar 

  28. Xu, H., Baracskay, P., O’Neill, J. & Csicsvari, J. Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze. Neuron 101, 119–132.e4 (2019).

    CAS  PubMed  Google Scholar 

  29. Jadhav, S. P., Kemere, C., German, P. W. & Frank, L. M. Awake hippocampal sharp-wave ripples support spatial memory. Science 336, 1454–1458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dupret, D., O’Neill, J., Pleydell-Bouverie, B. & Csicsvari, J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat. Neurosci. 13, 995–1002 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Turi, G. F. et al. Vasoactive intestinal polypeptide-expressing interneurons in the hippocampus support goal-oriented spatial learning. Neuron 101, 1150–1165.e8 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hollup, S. A., Molden, S., Donnett, J. G., Moser, M. B. & Moser, E. I. Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci. 21, 1635–1644 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dupret, D., O’Neill, J. & Csicsvari, J. Dynamic reconfiguration of hippocampal interneuron circuits during spatial learning. Neuron 78, 166–180 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ramon y Cajal, S. Textura del Sistema Nervioso del Hombre y de los Vertebrados: Estudios Sobre el Plan Estructural y Composición Histológica de los Centros Nerviosos Adicionados de Consideraciones Fisiológicas Fundadas en los Nuevos Descubrimentos (Moya, 1899).

  36. Segal, M. Dendritic spines: morphological building blocks of memory. Neurobiol. Learn. Mem. 138, 3–9 (2017).

    PubMed  Google Scholar 

  37. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    CAS  PubMed  Google Scholar 

  38. Harris, K. M. & Stevens, J. K. Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 9, 2982–2997 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bourne, J. N. & Harris, K. M. Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nimchinsky, E. A., Sabatini, B. L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    CAS  PubMed  Google Scholar 

  41. Noguchi, J., Matsuzaki, M., Ellis-Davies, G. C. & Kasai, H. Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46, 609–622 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nusser, Z. et al. Cell type and pathway dependence of synaptic AMPA receptor number and variability in the hippocampus. Neuron 21, 545–559 (1998).

    CAS  PubMed  Google Scholar 

  43. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    CAS  PubMed  Google Scholar 

  44. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    CAS  PubMed  Google Scholar 

  45. Trachtenberg, J. T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    CAS  PubMed  Google Scholar 

  46. Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    CAS  PubMed  Google Scholar 

  47. Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    CAS  PubMed  Google Scholar 

  48. Nägerl, U. V., Willig, K. I., Hein, B., Hell, S. W. & Bonhoeffer, T. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl Acad. Sci. USA 105, 18982–18987 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. Pfeiffer, T. et al. Chronic 2P-STED imaging reveals high turnover of dendritic spines in the hippocampus in vivo. eLife 7, e34700 (2018).

    PubMed  PubMed Central  Google Scholar 

  50. Hofer, S. B., Mrsic-Flogel, T. D., Bonhoeffer, T. & Hübener, M. Experience leaves a lasting structural trace in cortical circuits. Nature 457, 313–317 (2009).

    CAS  PubMed  Google Scholar 

  51. El-Boustani, S. et al. Locally coordinated synaptic plasticity of visual cortex neurons in vivo. Science 360, 1349–1354 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuhlman, S. J., O’Connor, D. H., Fox, K. & Svoboda, K. Structural plasticity within the barrel cortex during initial phases of whisker-dependent learning. J. Neurosci. 34, 6078–6083 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713–719 (2017).

    CAS  PubMed  Google Scholar 

  54. Meng, G. et al. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. eLife 8, e40805 (2019).

    PubMed  PubMed Central  Google Scholar 

  55. Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakahata, Y. & Yasuda, R. Plasticity of spine structure: local signaling, translation and cytoskeletal reorganization. Front. Synaptic Neurosci. 10, 29 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    CAS  PubMed  Google Scholar 

  58. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    CAS  PubMed  Google Scholar 

  59. Zhang, Y., Cudmore, R. H., Lin, D. T., Linden, D. J. & Huganir, R. L. Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo. Nat. Neurosci. 18, 402–407 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Roth, R. H., Zhang, Y. & Huganir, R. L. Dynamic imaging of AMPA receptor trafficking in vitro and in vivo. Curr. Opin. Neurobiol. 45, 51–58 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wakayama, S. et al. Chemical labelling for visualizing native AMPA receptors in live neurons. Nat. Commun. 8, 14850 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Schnell, E. et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number. Proc. Natl Acad. Sci. USA 99, 13902–13907 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 53, 719–734 (2007).

    CAS  PubMed  Google Scholar 

  64. Gray, N. W., Weimer, R. M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    PubMed  PubMed Central  Google Scholar 

  65. Wegner, W., Mott, A. C., Grant, S. G. N., Steffens, H. & Willig, K. I. In vivo STED microscopy visualizes PSD95 sub-structures and morphological changes over several hours in the mouse visual cortex. Sci. Rep. 8, 219 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Tang, A. H. et al. A trans-synaptic nanocolumn aligns neurotransmitter release to receptors. Nature 536, 210–214 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Haas, K. T. et al. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 7, e31755 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. Nair, D. et al. Super-resolution imaging reveals that AMPA receptors inside synapses are dynamically organized in nanodomains regulated by PSD95. J. Neurosci. 33, 13204–13224 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Chen, X., Leischner, U., Rochefort, N. L., Nelken, I. & Konnerth, A. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505 (2011).

    CAS  PubMed  Google Scholar 

  71. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Adam, Y. et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413–417 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, S. J., Escobedo-Lozoya, Y., Szatmari, E. M. & Yasuda, R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458, 299–304 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kourrich, S., Rothwell, P. E., Klug, J. R. & Thomas, M. J. Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J. Neurosci. 27, 7921–7928 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sepulveda-Orengo, M. T., Lopez, A. V., Soler-Cedeño, O. & Porter, J. T. Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons. J. Neurosci. 33, 7184–7193 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rumpel, S., LeDoux, J., Zador, A. & Malinow, R. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88 (2005).

    CAS  PubMed  Google Scholar 

  77. Humeau, Y. et al. A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J. Neurosci. 27, 10947–10956 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Houbaert, X. et al. Target-specific vulnerability of excitatory synapses leads to deficits in associative memory in a model of intellectual disorder. J. Neurosci. 33, 13805–13819 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fosque, B. F. et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015).

    CAS  PubMed  Google Scholar 

  80. Dittman, J. & Ryan, T. A. Molecular circuitry of endocytosis at nerve terminals. Annu. Rev. Cell Dev. Biol. 25, 133–160 (2009).

    CAS  PubMed  Google Scholar 

  81. Ferro, M. et al. Functional mapping of brain synapses by the enriching activity-marker SynaptoZip. Nat. Commun. 8, 1229 (2017).

    PubMed  PubMed Central  Google Scholar 

  82. Gubernator, N. G. et al. Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science 324, 1441–1444 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rodriguez, P. C. et al. Fluorescent dopamine tracer resolves individual dopaminergic synapses and their activity in the brain. Proc. Natl Acad. Sci. USA 110, 870–875 (2013).

    CAS  PubMed  Google Scholar 

  84. Dunn, M. et al. Designing a norepinephrine optical tracer for imaging individual noradrenergic synapses and their activity in vivo. Nat. Commun. 9, 2838 (2018).

    PubMed  PubMed Central  Google Scholar 

  85. Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Marvin, J. S. et al. Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nat. Methods 15, 936–939 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Barber, D. M. et al. Optical control of AMPA receptors using a photoswitchable quinoxaline-2,3-dione antagonist. Chem. Sci. 8, 611–615 (2017).

    CAS  PubMed  Google Scholar 

  91. Klippenstein, V., Hoppmann, C., Ye, S., Wang, L. & Paoletti, P. Optocontrol of glutamate receptor activity by single side-chain photoisomerization. eLife 6, e25808 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Takemoto, K. et al. Optical inactivation of synaptic AMPA receptors erases fear memory. Nat. Biotechnol. 35, 38–47 (2017).

    CAS  PubMed  Google Scholar 

  93. Lin, J. Y. et al. Optogenetic inhibition of synaptic release with chromophore-assisted light inactivation (CALI). Neuron 79, 241–253 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hayashi-Takagi, A. et al. Labelling and optical erasure of synaptic memory traces in the motor cortex. Nature 525, 333–338 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu, Q. et al. A photoactivatable botulinum neurotoxin for inducible control of neurotransmission. Neuron 101, 863–875.e6 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gobbo, F. et al. Activity-dependent expression of Channelrhodopsin at neuronal synapses. Nat. Commun. 8, 1629 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Giese, K. P., Fedorov, N. B., Filipkowski, R. K. & Silva, A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    CAS  PubMed  Google Scholar 

  98. Yamagata, Y. et al. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning. J. Neurosci. 29, 7607–7618 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Rossetti, T. et al. Memory erasure experiments indicate a critical role of CaMKII in memory storage. Neuron 96, 207–216.e2 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94, 690 (2017).

    CAS  PubMed  Google Scholar 

  101. Kelleher, R. J. III, Govindarajan, A., Jung, H. Y., Kang, H. & Tonegawa, S. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479 (2004).

    CAS  PubMed  Google Scholar 

  102. Diering, G. H. & Huganir, R. L. The AMPA receptor code of synaptic plasticity. Neuron 100, 314–329 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Nicoll, R. A. A brief history of long-term potentiation. Neuron 93, 281–290 (2017).

    CAS  PubMed  Google Scholar 

  104. Clem, R. L. & Huganir, R. L. Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330, 1108–1112 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Park, J. et al. CaMKII phosphorylation of TARPγ-8 is a mediator of LTP and learning and memory. Neuron 92, 75–83 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Choquet, D. Linking nanoscale dynamics of AMPA receptor organization to plasticity of excitatory synapses and learning. J. Neurosci. 38, 9318–9329 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Choquet, D. & Triller, A. The dynamic synapse. Neuron 80, 691–703 (2013).

    CAS  PubMed  Google Scholar 

  108. Kennedy, M. J. & Ehlers, M. D. Organelles and trafficking machinery for postsynaptic plasticity. Annu. Rev. Neurosci. 29, 325–362 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lledo, P. M., Zhang, X., Südhof, T. C., Malenka, R. C. & Nicoll, R. A. Postsynaptic membrane fusion and long-term potentiation. Science 279, 399–403 (1998).

    CAS  PubMed  Google Scholar 

  110. Jurado, S. et al. LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 77, 542–558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu, D. et al. Postsynaptic synaptotagmins mediate AMPA receptor exocytosis during LTP. Nature 544, 316–321 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Collingridge, G. L., Peineau, S., Howland, J. G. & Wang, Y. T. Long-term depression in the CNS. Nat. Rev. Neurosci. 11, 459–473 (2010).

    CAS  PubMed  Google Scholar 

  113. Awasthi, A. et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science 363, eaav1483 (2019).

    PubMed  Google Scholar 

  114. Kakegawa, W. et al. Optogenetic control of synaptic AMPA receptor endocytosis reveals roles of LTD in motor learning. Neuron 99, 985–998.e6 (2018).

    CAS  PubMed  Google Scholar 

  115. Penn, A. C. et al. Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 549, 384–388 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science 320, 201–205 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Dupuis, J. P. et al. Surface dynamics of GluN2B-NMDA receptors controls plasticity of maturing glutamate synapses. EMBO J. 33, 842–861 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Peng, X. et al. Cellular plasticity induced by anti-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor encephalitis antibodies. Ann. Neurol. 77, 381–398 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Haselmann, H. et al. Human autoantibodies against the AMPA receptor subunit GluA2 induce receptor reorganization and memory dysfunction. Neuron 100, 91–105.e9 (2018).

    CAS  PubMed  Google Scholar 

  120. Neubert, F. et al. Bioorthogonal click chemistry enables site-specific fluorescence labeling of functional NMDA receptors for super-resolution imaging. Angew. Chem. Int. Edn Engl. 57, 16364–16369 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the critical suggestions of A. Getz, F. Lanore and T. Bienvenu on this manuscript. We express our warmest thanks to the many outstanding members of our teams and collaborators that participated in the elaboration of these concepts. This work is currently supported by funding from the Ministère de l’Enseignement Supérieur et de la Recherche, Centre National de la Recherche Scientifique, ERC Grant #787340 Dyn-Syn-Mem, FRM Grant # DEQ20180339189 AMPA-MO-CO and the Conseil Régional de Nouvelle Aquitaine.

Author information

Authors and Affiliations

Authors

Contributions

D.C. and Y.H. generated the concepts, analyzed the bibliography and wrote the manuscript.

Corresponding authors

Correspondence to Yann Humeau or Daniel Choquet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Neuroscience thanks Denise Cai, Ryohei Yasuda and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humeau, Y., Choquet, D. The next generation of approaches to investigate the link between synaptic plasticity and learning. Nat Neurosci 22, 1536–1543 (2019). https://doi.org/10.1038/s41593-019-0480-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-019-0480-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing