Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement

Abstract

Cryogenic electron microscopy (cryo-EM) data represent density maps of macromolecular systems at atomic or near-atomic resolution. However, building and refining 3D atomic models by using data from cryo-EM maps is not straightforward and requires significant hands-on experience and manual intervention. We recently developed StarMap, an easy-to-use interface between the popular structural display program ChimeraX and Rosetta, a powerful molecular modeling engine. StarMap offers a general approach for refining structural models of biological macromolecules into cryo-EM density maps by combining Monte Carlo sampling with local density-guided optimization, Rosetta-based all-atom refinement and real-space B-factor calculations in a straightforward workflow. StarMap includes options for structural symmetry, local refinements and independent model validation. The overall quality of the refinement and the structure resolution is then assessed via analytical outputs, such as magnification calibration (pixel size calibration) and Fourier shell correlations. Z-scores reported by StarMap provide an easily interpretable indicator of the goodness of fit for each residue and can be plotted to evaluate structural models and improve local residue refinements, as well as to identify flexible regions and potentially functional sites in large macromolecular complexes. The protocol requires general computer skills, without the need for coding expertise, because most parts of the workflow can be operated by clicking tabs within the ChimeraX graphical user interface. Time requirements for the model refinement depend on the size and quality of the input data; however, this step can typically be completed within 1 d. The analytical parts of the workflow are completed within minutes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: StarMap/Rosetta pipeline.
Fig. 2: Screenshot of the StarMap GUI.
Fig. 3: Molecular symmetry supported by StarMap.
Fig. 4: Exemplary run of the StarMap/Rosetta pipeline.
Fig. 5: Analysis of a deposited model in StarMap.
Fig. 6: Handling ligands in StarMap.
Fig. 7: Job execution options in StarMap.

Similar content being viewed by others

Data availability

The example workflow (Box 3) uses a deposited map (EMDB entry 13054), and the corresponding protein sequence is obtained from UniProt86 (accession number B7UMA7). All required input and output files are provided in Supplementary Data 1.

Code availability

StarMap is available under libre/open source license (BSD 2-Clause ‘Simplified’ License) from GitHub (https://github.com/wlugmayr/chimerax-starmap). StarMap version 1.1.66 used to generate data from Box 3 is available from the Supplement.

References

  1. Kühlbrandt, W. Biochemistry. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  Google Scholar 

  2. Milne, J. L. S. et al. Cryo-electron microscopy: a primer for the non-microscopist. FEBS J. 280, 28–45 (2013).

    Article  CAS  Google Scholar 

  3. Henderson, R. & McMullan, G. Problems in obtaining perfect images by single-particle electron cryomicroscopy of biological structures in amorphous ice. Microscopy 62, 43–50 (2013).

    Article  Google Scholar 

  4. Baker, T. S. & Henderson, R. Electron cryomicroscopy of biological macromolecules. In International Tables for Crystallography Vol. F (eds. Arnold, E., Himmel, D. M. & Rossmann, M. G.) 593–614 (John Wiley & Sons, Ltd, 2012).

  5. Scheres, S. H. W. Processing of structurally heterogeneous cryo-EM data in RELION. In Methods in Enzymology Vol. 579 (ed. Crowther, R. A.) 125–157 (Academic Press, 2016).

  6. Ludtke, S. J. Single-particle refinement and variability analysis in EMAN2.1. In Methods in Enzymology Vol. 579 (ed. Crowther, R. A.) 159–189 (Academic Press, 2016).

  7. Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    Article  CAS  Google Scholar 

  8. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D. Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  9. Chen, M., Baldwin, P. R., Ludtke, S. J. & Baker, M. L. De novo modeling in cryo-EM density maps with Pathwalking. J. Struct. Biol. 196, 289–298 (2016).

    Article  CAS  Google Scholar 

  10. Chojnowski, G., Sobolev, E., Heuser, P. & Lamzin, V. S. The accuracy of protein models automatically built into cryo-EM maps with ARP/wARP. Acta Crystallogr. D. Struct. Biol. 77, 142–150 (2021).

    Article  CAS  Google Scholar 

  11. Terwilliger, T. C., Adams, P. D., Afonine, P. V. & Sobolev, O. V. A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps. Nat. Methods 15, 905–908 (2018).

    Article  CAS  Google Scholar 

  12. Frenz, B., Walls, A. C., Egelman, E. H., Veesler, D. & DiMaio, F. RosettaES: a sampling strategy enabling automated interpretation of difficult cryo-EM maps. Nat. Methods 14, 797–800 (2017).

    Article  CAS  Google Scholar 

  13. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

  14. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D. Biol. Crystallogr. 74, 531–544 (2018).

    Article  CAS  Google Scholar 

  15. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D. Biol. Crystallogr. 74, 519–530 (2018).

    Article  CAS  Google Scholar 

  16. Kim, D. N. et al. Cryo_fit: democratization of flexible fitting for cryo-EM. J. Struct. Biol. 208, 1–6 (2019).

    Article  CAS  Google Scholar 

  17. Kidmose, R. T. et al. Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).

    Article  CAS  Google Scholar 

  18. Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997).

    Article  CAS  Google Scholar 

  19. Simons, K. T. et al. Improved recognition of native-like protein structures using a combination of sequence-dependent and sequence-independent features of proteins. Proteins 34, 82–95 (1999).

    Article  CAS  Google Scholar 

  20. Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 17, 665–680 (2020).

    Article  CAS  Google Scholar 

  21. Alford, R. F. et al. The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017).

    Article  CAS  Google Scholar 

  22. DiMaio, F. et al. Atomic-accuracy models from 4.5-Å cryo-electron microscopy data with density-guided iterative local refinement. Nat. Methods 12, 361–365 (2015).

    Article  CAS  Google Scholar 

  23. DiMaio, F., Tyka, M. D., Baker, M. L., Chiu, W. & Baker, D. Refinement of protein structures into low-resolution density maps using rosetta. J. Mol. Biol. 392, 181–190 (2009).

    Article  CAS  Google Scholar 

  24. Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    Article  CAS  Google Scholar 

  25. Frenz, B. et al. Automatically fixing errors in glycoprotein structures with Rosetta. Structure 27, 134–139.e3 (2019).

    Article  CAS  Google Scholar 

  26. Pavlovicz, R. E., Park, H. & DiMaio, F. Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking discrimination. PLoS Comput. Biol. 16, e1008103 (2020).

    Article  CAS  Google Scholar 

  27. Renfrew, P. D., Choi, E. J., Bonneau, R. & Kuhlman, B. Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design. PLoS One 7, e32637 (2012).

    Article  CAS  Google Scholar 

  28. Wang, R. Y.-R. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).

    Article  Google Scholar 

  29. Xu, J. et al. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Nature 551, 653–657 (2017).

    Article  CAS  Google Scholar 

  30. Usluer, G. D. et al. Cryo-EM structure of the bacterial actin AlfA reveals unique assembly and ATP-binding interactions and the absence of a conserved subdomain. Proc. Natl Acad. Sci. USA 115, 3356–3361 (2018).

    Article  CAS  Google Scholar 

  31. James, Z. M. et al. CryoEM structure of a prokaryotic cyclic nucleotide-gated ion channel. Proc. Natl Acad. Sci. USA 114, 4430–4435 (2017).

    Article  CAS  Google Scholar 

  32. Kotov, V., Lunelli, M., Wald, J., Kolbe, M. & Marlovits, T. C. Helical reconstruction of Salmonella and Shigella needle filaments attached to type 3 basal bodies. Biochem. Biophys. Rep. 27, 101039 (2021).

    CAS  Google Scholar 

  33. Wald, J. et al. Cryo-EM structure of pleconaril-resistant rhinovirus-B5 complexed to the antiviral OBR-5-340 reveals unexpected binding site. Proc. Natl Acad. Sci. USA 116, 19109–19115 (2019).

    Article  CAS  Google Scholar 

  34. Bunduc, C. M. et al. Structure and dynamics of a mycobacterial type VII secretion system. Nature 593, 445–448 (2021).

    Article  CAS  Google Scholar 

  35. Miletic, S. et al. Substrate-engaged type III secretion system structures reveal gating mechanism for unfolded protein translocation. Nat. Commun. 12, 1546 (2021).

    Article  CAS  Google Scholar 

  36. Goessweiner-Mohr, N. et al. Structural control for the coordinated assembly into functional pathogenic type-3 secretion systems. Preprint at https://www.biorxiv.org/content/10.1101/714097v1.full (2019).

  37. Wald, J. et al. Mechanism of AAA+ ATPase-mediated RuvAB–Holliday junction branch migration. Nature 609, 630–639 (2022).

    Article  CAS  Google Scholar 

  38. Loquet, A. et al. Atomic model of the type III secretion system needle. Nature 486, 276–279 (2012).

    Article  CAS  Google Scholar 

  39. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  Google Scholar 

  40. Terwilliger, T. C., Sobolev, O. V., Afonine, P. V., Adams, P. D. & Read, R. J. Density modification of cryo-EM maps. Acta Crystallogr. D. Biol. Crystallogr. 76, 912–925 (2020).

    Article  CAS  Google Scholar 

  41. Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 1–8 (2021).

    Article  Google Scholar 

  42. Lawson, C. L. et al. EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Res. 39, D456–D464 (2011).

    Article  CAS  Google Scholar 

  43. De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).

    Article  Google Scholar 

  44. Zhang, X., Jin, L., Fang, Q., Hui, W. H. & Zhou, Z. H. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell 141, 472–482 (2010).

    Article  CAS  Google Scholar 

  45. Dube, P., Tavares, P., Lurz, R. & van Heel, M. The portal protein of bacteriophage SPP1: a DNA pump with 13-fold symmetry. EMBO J. 12, 1303–1309 (1993).

    Article  CAS  Google Scholar 

  46. Costa, A. & Patwardhan, A. A novel mirror-symmetry analysis approach for the study of macromolecular assemblies imaged by electron microscopy. J. Mol. Biol. 378, 273–283 (2008).

    Article  CAS  Google Scholar 

  47. Marco, S. et al. The molecular chaperone TF55. FEBS Lett. 341, 152–155 (1994).

    Article  CAS  Google Scholar 

  48. He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

    Article  CAS  Google Scholar 

  49. Zhang, X. Python-based Helix Indexer: a GUI program for finding symmetry of helical assembly through Fourier-Bessel indexing of electron microscopic data. Protein Sci. 31, 107–117 (2022).

    Article  CAS  Google Scholar 

  50. Tykač, M., Černý, J. & Murshudov, G. N. De novo detection of symmetry in cryo-EM density maps. Acta Crystallogr. A 77, C692 (2021).

    Article  Google Scholar 

  51. Reboul, C. F., Kiesewetter, S., Elmlund, D. & Elmlund, H. Point-group symmetry detection in three-dimensional charge density of biomolecules. Bioinformatics 36, 2237–2243 (2020).

    Article  CAS  Google Scholar 

  52. DiMaio, F. et al. Improved low-resolution crystallographic refinement with Phenix and Rosetta. Nat. Methods 10, 1102–1104 (2013).

    Article  CAS  Google Scholar 

  53. Terwilliger, T. C. et al. phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta. J. Struct. Funct. Genomics 13, 81–90 (2012).

    Article  CAS  Google Scholar 

  54. Pražnikar, J., Afonine, P. V., Gunčar, G., Adams, P. D. & Turk, D. Averaged kick maps: less noise, more signal…and probably less bias. Acta Crystallogr. D. Biol. Crystallogr. 65, 921–931 (2009).

    Article  Google Scholar 

  55. Afonine, P. V. et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D. Biol. Crystallogr. 68, 352–367 (2012).

    Article  CAS  Google Scholar 

  56. Skubák, P., Murshudov, G. N. & Pannu, N. S. Direct incorporation of experimental phase information in model refinement. Acta Crystallogr. D. Biol. Crystallogr. 60, 2196–2201 (2004).

    Article  Google Scholar 

  57. Bourne, P. E. et al. Macromolecular crystallographic information file. In Methods in Enzymology Vol. 277 (eds. Abelson, J. N., Simon, M. I., Carter, Jr., C. W. & Sweet, R. M.) 571–590 (Academic Press, 1997).

  58. Westbrook, J. D. & Fitzgerald, P. M. D. The PDB format, mmCIF formats, and other data formats. In Structural Bioinformatics (eds. Bourne, P. E. & Weissig, H.) 159–179 (John Wiley & Sons, Ltd, 2003).

  59. Park, H., Zhou, G., Baek, M., Baker, D. & DiMaio, F. Force field optimization guided by small molecule crystal lattice data enables consistent sub-angstrom protein–ligand docking. J. Chem. Theory Comput. 17, 2000–2010 (2021).

    Article  CAS  Google Scholar 

  60. Wlodawer, A., Li, M. & Dauter, Z. High-resolution cryo-EM maps and models: a crystallographer’s perspective. Structure 25, 1589–1597.e1 (2017).

    Article  CAS  Google Scholar 

  61. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  CAS  Google Scholar 

  62. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  CAS  Google Scholar 

  63. Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol. 13, e1005324 (2017).

    Article  Google Scholar 

  64. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat. Methods 12, 7–8 (2015).

    Article  CAS  Google Scholar 

  65. Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).

    Article  CAS  Google Scholar 

  66. Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022).

    Article  CAS  Google Scholar 

  67. Keating, K. S. & Pyle, A. M. RCrane: semi-automated RNA model building. Acta Crystallogr. D. Biol. Crystallogr. 68, 985–995 (2012).

    Article  CAS  Google Scholar 

  68. Kappel, K. et al. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Nat. Methods 15, 947–954 (2018).

    Article  CAS  Google Scholar 

  69. Jossinet, F., Ludwig, T. E. & Westhof, E. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics 26, 2057–2059 (2010).

    Article  CAS  Google Scholar 

  70. Chou, F.-C., Echols, N., Terwilliger, T. C. & Das, R. RNA structure refinement using the ERRASER-Phenix pipeline. Methods Mol. Biol. 1320, 269–282 (2016).

    Article  Google Scholar 

  71. Fleishman, S. J. et al. RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS ONE 6, e20161 (2011).

    Article  CAS  Google Scholar 

  72. van Zundert, G. C. P., Bonvin, A. M. J. J., van Zundert, G. C. P. & Bonvin, A. M. J. J. Fast and sensitive rigid-body fitting into cryo-EM density maps with PowerFit. AIMS Biophys. 2, 73–87 (2015).

    Article  Google Scholar 

  73. Feng, Z. et al. Ligand Depot: a data warehouse for ligands bound to macromolecules. Bioinformatics 20, 2153–2155 (2004).

    Article  CAS  Google Scholar 

  74. Dimitropoulos, D., Ionides, J. & Henrick, K. Using MSDchem to search the PDB ligand dictionary. Curr. Protoc. Bioinforma. 14, 14.3.1–14.3.21 (2006).

    Google Scholar 

  75. Long, F. et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr. D. Struct. Biol. 73, 112–122 (2017).

    Article  CAS  Google Scholar 

  76. Landrum, G. et al. RDKit: Open-source cheminformatics. Available at https://zenodo.org/record/6961488#.YyplJOzML_U (Zenodo, 2021).

  77. Yoshikawa, N. & Hutchison, G. R. Fast, efficient fragment-based coordinate generation for Open Babel. J. Cheminform. 11, 49 (2019).

    Article  Google Scholar 

  78. Terwilliger, T. C., Klei, H., Adams, P. D., Moriarty, N. W. & Cohn, J. D. Automated ligand fitting by core-fragment fitting and extension into density. Acta Crystallogr. D. Biol. Crystallogr. 62, 915–922 (2006).

    Article  Google Scholar 

  79. Evrard, G. X., Langer, G. G., Perrakis, A. & Lamzin, V. S. Assessment of automatic ligand building in ARP/wARP. Acta Crystallogr. D. Biol. l Crystallogr. 63, 108–117 (2007).

    Article  CAS  Google Scholar 

  80. Nicholls, R. A. Ligand fitting with CCP4. Acta Crystallogr. D. Biol. Crystallogr. 73, 158–170 (2017).

    Article  CAS  Google Scholar 

  81. Kahraman, A. et al. Cross-link guided molecular modeling with ROSETTA. PLoS ONE 8, e73411 (2013).

    Article  CAS  Google Scholar 

  82. Ovchinnikov, S., Kamisetty, H. & Baker, D. Robust and accurate prediction of residue–residue interactions across protein interfaces using evolutionary information. eLife 3, e02030 (2014).

    Article  Google Scholar 

  83. Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6, e28766 (2011).

    Article  CAS  Google Scholar 

  84. Veusz - A Scientific Plotting Package. Available at https://veusz.github.io/

  85. Liu, K. et al. Structural basis of CXC chemokine receptor 2 activation and signalling. Nature 585, 135–140 (2020).

    Article  CAS  Google Scholar 

  86. The UniProt Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42, D191–D198 (2014).

    Article  Google Scholar 

  87. Olieric, V. et al. Data-collection strategy for challenging native SAD phasing. Acta Crystallogr. D. Biol. Crystallogr. 72, 421–429 (2016).

    Article  CAS  Google Scholar 

  88. Santos, R. et al. Structure of human immunoproteasome with a reversible and noncompetitive inhibitor that selectively inhibits activated lymphocytes. Nat. Commun. 8, 1692 (2017).

    Article  Google Scholar 

  89. Grieben, M. et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114–122 (2017).

    Article  CAS  Google Scholar 

  90. Zhou, X. et al. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat. Struct. Mol. Biol. 24, 1146–1154 (2017).

    Article  CAS  Google Scholar 

  91. Ruiz Carrillo, D. et al. Crystallization and preliminary crystallographic analysis of human aquaporin 1 at a resolution of 3.28 Å. Acta Crystallogr. F. Struct. Biol. Commun. 70, 1657–1663 (2014).

    Article  CAS  Google Scholar 

  92. Yuan, B. et al. Structural dynamics of the functional nonameric type III translocase export gate. J. Mol. Biol. 433, 167188 (2021).

    Article  CAS  Google Scholar 

  93. Roh, S.-H. et al. Subunit conformational variation within individual GroEL oligomers resolved by Cryo-EM. Proc. Natl Acad. Sci. USA 114, 8259–8264 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all current and former members of the Marlovits laboratory for their support in this project. High-performance computing was possible through access to the computing clusters at Deutsches Elektronen Synchrotron (DESY)/Hamburg (Germany) and the Vienna Scientific Cluster (Austria). This project was supported by funds available to T.C.M. through the Behörde für Wissenschaft, Forschung und Gleichstellung of the city of Hamburg at the Institute of Structural and Systems Biology at the University Medical Center Hamburg–Eppendorf (UKE), DESY, the Institute for Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences and the Research Institute of Molecular Pathology (IMP).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: F.D.M. and T.C.M. Methodology: W.L., F.D.M. and T.C.M. Software: W.L. and F.D.M. Investigation: N.G.M., J.W., V.K. Formal analysis: all authors. Resources: T.C.M. Writing—original draft: V.K. and W.L. Writing—review and editing: all authors. Visualization: V.K. and W.L. Supervision: T.C.M. Funding acquisition: T.C.M.

Corresponding author

Correspondence to Thomas C. Marlovits.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key papers related to this protocol

DiMaio, F. et al. Nat. Methods 12, 361–365 (2015): https://doi.org/10.1038/nmeth.3286

Wang, R. Y.-R. et al. eLife 5, e17219 (2016): https://doi.org/10.7554/eLife.17219

Kotov, V. et al. Biochem. Biophys. Rep. 27, 101039 (2021): https://doi.org/10.1016/j.bbrep.2021.101039

Wald, J. et al. Nature 609, 630–639 (2022): https://doi.org/10.1038/s41586-022-05121-1

Supplementary information

Supplementary Video 1

This short video shows how to set up a StarMap refinement and how to inspect outputs

Supplementary Software 1

A distribution of StarMap (any platform)

Supplementary Data 1

Input and output files for an exemplary StarMap run (Box 3)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugmayr, W., Kotov, V., Goessweiner-Mohr, N. et al. StarMap: a user-friendly workflow for Rosetta-driven molecular structure refinement. Nat Protoc 18, 239–264 (2023). https://doi.org/10.1038/s41596-022-00757-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00757-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics