Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mobility–stability trade-off in oxide thin-film transistors

Abstract

Thin-film transistors based on amorphous oxide semiconductors could be used to create low-cost backplane technology for large flat-panel displays. However, a trade-off between mobility and stability has limited the ability of such devices to replace current polycrystalline silicon technologies. Here we show that the sensitivity of amorphous oxide semiconductors to externally introduced impurities and defects is determined by the location of the conduction-band minimum and the relevant doping ability. Using bilayer-structured thin-film transistors, we identify the exact charge-trapping position under bias stress, which shows that the Fermi-level shift in the active layer can occur via electron donation from carbon-monoxide-related impurities. This mechanism is highly dependent on the location of the conduction-band minimum and explains why carbon-monoxide-related impurities greatly affect the stability of high-mobility indium tin zinc oxide transistors but not that of low-mobility indium gallium zinc oxide transistors. Based on these insights, we develop indium tin zinc oxide transistors with mobilities of 70 cm2 (V s)–1 and low threshold voltage shifts of –0.02 V and 0.12 V under negative- and positive-bias temperature stress, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of two possible NBS mechanisms.
Fig. 2: Identification of NBTS mechanism utilizing bilayer TFT.
Fig. 3: Universal tendency of electronic structure and electrical properties of AOSs.
Fig. 4: CO-related impurities introduced by photolithography.
Fig. 5: Correlation between CO-related impurity and bias stability.
Fig. 6: Stability test results of ITZO TFTs with different chemical compositions.

Similar content being viewed by others

Data availability

The datasets analysed in this study are available from the corresponding authors upon reasonable request.

References

  1. Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    Article  Google Scholar 

  2. Song, J. H., Kim, K. S., Mo, Y. G., Choi, R. & Jeong, J. K. Achieving high field-effect mobility exceeding 50 cm2/Vs in In-Zn-Sn-O thin-film transistors. IEEE Electron Device Lett. 35, 853–855 (2014).

    Article  Google Scholar 

  3. Yu, M. J., Lin, R. P., Chang, Y. H. & Hou, T. H. High-voltage amorphous InGaZnO TFT with Al2O3 high-k dielectric for low-temperature monolithic 3-D integration. IEEE Trans. Electron Devices 63, 3944–3949 (2016).

    Article  Google Scholar 

  4. Jeon, S. et al. Nanometer-scale oxide thin film transistor with potential for high-density image sensor applications. ACS Appl. Mater. Interfaces 3, 1–6 (2011).

    Article  Google Scholar 

  5. Jeon, S. et al. High performance bilayer oxide transistor for gate driver circuitry implemented on power electronic devices. In 2012 Symposium on VLSI Technology (VLSIT) 125–126 (IEEE, 2012).

  6. Jun, T., Kim, J., Sasase, M. & Hosono, H. Material design of p-type transparent amorphous semiconductor, Cu–Sn–I. Adv. Mater. 30, 1706573 (2018).

    Article  Google Scholar 

  7. Jeong, J. K. Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays. J. Mater. Res. 28, 2071–2084 (2013).

    Article  Google Scholar 

  8. Hosono, H. Exploring electro-active functionality of transparent oxide materials. Jpn. J. Appl. Phys. 52, 090001 (2013).

    Article  Google Scholar 

  9. Kang, Y. et al. Hydrogen bistability as the origin of photo-bias-thermal instabilities in amorphous oxide semiconductors. Adv. Electron. Mater. 1, 1400006 (2015).

    Article  Google Scholar 

  10. Bang, J., Matsuishi, S. & Hosono, H. Hydrogen anion and subgap states in amorphous In–Ga–Zn–O thin films for TFT applications. Appl. Phys. Lett. 110, 232105 (2017).

    Article  Google Scholar 

  11. Kim, J. et al. Ultrawide bandgap amorphous oxide semiconductor, Ga–Zn–O. Thin Solid Films 614, 84–89 (2016).

    Article  Google Scholar 

  12. Kim, J. et al. Conversion of an ultra-wide bandgap amorphous oxide insulator to a semiconductor. NPG Asia Mater. 9, e359 (2017).

    Article  Google Scholar 

  13. Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. and Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database.

  14. Korusenko, P. M. et al. Formation of tin-tin oxide core–shell nanoparticles in the composite SnO2−x/nitrogen-doped carbon nanotubes by pulsed ion beam irradiation. Nucl. Instrum. Meth. B 394, 37–43 (2017).

    Article  Google Scholar 

  15. Zhang, X. et al. ‘Butterfly effect’ in CuO/graphene composite nanosheets: a small interfacial adjustment triggers big changes in electronic structure and Li-ion storage performance. ACS Appl. Mater. Interfaces 6, 17236–17244 (2014).

    Article  Google Scholar 

  16. Yiliguma, Z. et al. Sub-5 nm SnO2 chemically coupled hollow carbon spheres for efficient electrocatalytic CO2 reduction. J. Mater. Chem. A 6, 20121–20127 (2018).

    Article  Google Scholar 

  17. Mahmoodinezhad, A. et al. Low-temperature growth of gallium oxide thin films by plasma-enhanced atomic layer deposition. J. Vac. Sci. Technol. A 38, 022404 (2020).

    Article  Google Scholar 

  18. Zhu, C., Osherov, A. & Panzer, M. J. Surface chemistry of electrodeposited Cu2O films studied by XPS. Electrochim. Acta 111, 771–778 (2013).

    Article  Google Scholar 

  19. Gonzalez-Elipe, A. R., Espinos, J. P., Fernandez, A. & Munuera, G. XPS study of the surface carbonation/hydroxylation state of metal oxides. Appl. Surf. Sci. 45, 103–108 (1990).

    Article  Google Scholar 

  20. García, V., Fernández, J. J., Ruíz, W., Mondragón, F. & Moreno, A. Effect of MgO addition on the basicity of Ni/ZrO2 and on its catalytic activity in carbon dioxide reforming of methane. Catal. Commun. 11, 240–246 (2009).

    Article  Google Scholar 

  21. Kim, W. G. et al. High-pressure gas activation for amorphous indium-gallium-zinc-oxide thin-film transistors at 100 °C. Sci. Rep. 6, 23039 (2016).

    Article  Google Scholar 

  22. Zhong, W., Yao, R., Chen, Z., Lan, L. & Chen, R. Self-assembled monolayers (SAMs)/Al2O3 double layer passivated InSnZnO thin-film transistor. IEEE Access 8, 101834–101839 (2020).

    Article  Google Scholar 

  23. Hong, S. et al. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process. Sci. Rep. 7, 16265 (2017).

    Article  Google Scholar 

  24. Doll, T., Velasco-Velez, J. J., Rosenthal, D., Avila, J. & Fuenzalida, V. Direct observation of the electroadsorptive effect on ultrathin films for microsensor and catalytic-surface control. ChemPhysChem 14, 2505–2510 (2013).

    Article  Google Scholar 

  25. Singh, N., Yan, C. & Lee, P. S. Room temperature CO gas sensing using Zn-doped In2O3 single nanowire field effect transistors. Sens. Actuators B Chem. 150, 19–24 (2010).

    Article  Google Scholar 

  26. Zhang, Y., Cui, S., Chang, J., Ocola, L. E. & Chen, J. Highly sensitive room temperature carbon monoxide detection using SnO2 nanoparticle-decorated semiconducting single-walled carbon nanotubes. Nanotechnology 24, 025503 (2013).

    Article  Google Scholar 

  27. Kuang, Q. et al. Enhancing the photon- and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. J. Phys. Chem. C 112, 11539–11544 (2008).

    Article  Google Scholar 

  28. Velasco-Velez, J. J. et al. CMOS-compatible nanoscale gas-sensor based on field effect. Phys. Stat. Sol. (a) 206, 474–483 (2009).

    Article  Google Scholar 

  29. Wolkenstein, T. The Electron Theory of Catalysis on Semiconductors (Oxford, 1963).

  30. Wang, C., Yin, L., Zhang, L., Xiang, D. & Gao, R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010).

    Article  Google Scholar 

  31. Harrison, M. & Willett, P. The mechanism of operation of tin(iv) oxide carbon monoxide sensors. Nature 332, 337–339 (1988).

    Article  Google Scholar 

  32. Geistlinger, H. Electron theory of thin-film gas sensors. Sens. Actuators B Chem. 17, 47–60 (1993).

    Article  Google Scholar 

  33. Nakamura, N., Kim, J. & Hosono, H. Material design of transparent oxide semiconductors for organic electronics: why do zinc silicate thin films have exceptional properties? Adv. Electron. Mater. 4, 1700352 (2018).

    Article  Google Scholar 

  34. Ide, K. et al. Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 99, 093507 (2011).

    Article  Google Scholar 

  35. Nomura, K., Kamiya, T. & Hosono, H. Stability and high-frequency operation of amorphous In-Ga-Zn-O thin-film transistors with various passivation layers. Thin Solid Films 520, 3778–3782 (2012).

    Article  Google Scholar 

  36. Nomura, K. et al. Subgap states in transparent amorphous oxide semiconductor, In–Ga–Zn–O, observed by bulk sensitive x-ray photoelectron spectroscopy. Appl. Phys. Lett. 92, 202117 (2008).

    Article  Google Scholar 

  37. Nomura, K. et al. Depth analysis of subgap electronic states in amorphous oxide semiconductor, a-In-Ga-Zn-O, studied by hard x-ray photoelectron spectroscopy. J. Appl. Phys. 109, 073726 (2011).

    Article  Google Scholar 

  38. Kim, J., Bang, J., Nakamura, N. & Hosono, H. Ultra-wide bandgap amorphous oxide semiconductors for NBIS-free thin-film transistors. APL Mater. 7, 022501 (2019).

    Article  Google Scholar 

  39. Zschieschang, U., Weitz, R. T., Kern, K. & Klauk, H. Bias stress effect in low-voltage organic thin-film transistors. Appl. Phys. A 95, 139–145 (2009).

    Article  Google Scholar 

  40. Lin, Y. H. et al. Hybrid organic–metal oxide multilayer channel transistors with high operational stability. Nat. Electron. 2, 587–595 (2019).

    Article  Google Scholar 

  41. Chang, Y. H., Yu, M. J., Lin, R. P., Hsu, C. P. & Hou, T. H. Abnormal positive bias stress instability of In–Ga–Zn–O thin-film transistors with low-temperature Al2O3 gate dielectric. Appl. Phys. Lett. 108, 033502 (2016).

    Article  Google Scholar 

  42. Shin, J. H. et al. Light effects on the bias stability of transparent ZnO thin film transistors. ETRI J. 31, 62–64 (2009).

    Article  Google Scholar 

  43. Yoon, S. J., Seong, N. J., Choi, K., Shin, W. C. & Yoon, S. M. Investigations on the bias temperature stabilities of oxide thin film transistors using In–Ga–Zn–O channels prepared by atomic layer deposition. RSC Adv. 8, 25014–25020 (2018).

    Article  Google Scholar 

  44. Hong, W., Oh, D. S. & Choi, S. Y. Passivation layer effect on the positive bias temperature instability of molybdenum disulfide thin film transistors. J. Inf. Disp. 22, 13–19 (2021).

    Article  Google Scholar 

  45. Park, S., Cho, E. N. & Yun, I. Threshold voltage shift prediction for gate bias stress on amorphous InGaZnO thin film transistors. Microelectron. Reliab. 52, 2215–2219 (2012).

    Article  Google Scholar 

  46. Zhou, F., Chiang, T. H. and Wager, J. F. Stretched-exponential trends in a-IGZO TFTs. Meet. Abstr. MA2016-02, 2142 (2016).

  47. Zhou, F., Chiang, T. H. & Wager, J. F. Kinetics of response of ZnO-Ag ceramics for resistive gas sensor to the impact of methane, and its analysis using a stretched exponential function. Sens. Actuators B Chem. 255, 1680–1686 (2018).

    Article  Google Scholar 

  48. Abe, K., Ota, K. & Kuwagaki, T. Device modeling of amorphous oxide semiconductor TFTs. Jpn. J. Appl. Phys. 58, 090505 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the MEXT Element Strategy Initiative: To Form Core Research Centers (no. JPMXP0112101001).

Author information

Authors and Affiliations

Authors

Contributions

H.H. and J.K. supervised the project. Y.-S.S., K.S. and Y.S. fabricated and characterized the samples with support from J.K. M.S. performed the transmission electron microscopy observations. S.U. performed the HAXPES measurements and analyses. K.A. performed the device simulation and analyses. Y.-S.S. wrote the manuscript with contributions mainly from H.H. and J.K. All the authors have given their approval to the final version of the manuscript.

Corresponding authors

Correspondence to Junghwan Kim or Hideo Hosono.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Sang-Hee Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiah, YS., Sim, K., Shi, Y. et al. Mobility–stability trade-off in oxide thin-film transistors. Nat Electron 4, 800–807 (2021). https://doi.org/10.1038/s41928-021-00671-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-021-00671-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing