Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Metabolic Messengers
  • Published:

Metabolic Messengers: endocannabinoids

Abstract

Endocannabinoid signalling is considered one of the most important modulatory systems in a whole organism. Research has yielded great insight on the mechanisms that link endocannabinoids and metabolic functions. Here, we provide a brief overview of the metabolic roles of endocannabinoids in tissue, cellular and subcellular-dependent mechanisms. In general, we point out how the central and peripheral control of body energy metabolism likely represents the main function of type-1 cannabinoid receptors. More specifically, we focus on recent advances underlying mechanisms of endocannabinoid control of cell metabolism through the modulation of the functions of specific organelles. While highlighting a historical summary and summarizing past discoveries, this short review aims at proposing future open questions for a field that does not stop surprising researchers with unexpected and exciting discoveries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of (endo)cannabinoid research.
Fig. 2: Target locations and metabolic activities of endocannabinoids.
Fig. 3: Diverse CB1R signalling cascades and their functions.

References

  1. Crocq, M. A. History of cannabis and the endocannabinoid system. Dialogues Clin. Neurosci. 22, 223–228 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mazier, W., Saucisse, N., Gatta-Cherifi, B. & Cota, D. The endocannabinoid system: pivotal orchestrator of obesity and metabolic disease. Trends Endocrinol. Metab. 26, 524–537 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, R., Aycock, B. F. Jr & Loewe, S. Tetrahydrocannabinol homologs. J. Am. Chem. Soc. 70, 662–664 (1948).

    Article  CAS  PubMed  Google Scholar 

  4. Mechoulam, R. & Gaoni, Y. Hashish–IV: The isolation and structure of cannabinolic cannabidiolic and cannabigerolic acids. Tetrahedron 21, 1223–1229 (1965).

    Article  CAS  PubMed  Google Scholar 

  5. Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Petrosino, S. & Di Marzo, V. FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels. Curr. Opin. Investig. Drugs 11, 51–62 (2010).

    CAS  PubMed  Google Scholar 

  11. Pertwee, R. G. Endocannabinoids and Their Pharmacological Actions. Handb. Exp. Pharmacol. 231, 1–37 (2015).

    CAS  Google Scholar 

  12. Piazza, P. V., Cota, D. & Marsicano, G. The CB1 receptor as the cornerstone of exostasis. Neuron 93, 1252–1274 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Ligresti, A., De Petrocellis, L. & Di Marzo, V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol. Rev. 96, 1593–1659 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Maccarrone, M. et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci. 36, 277–296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cristino, L., Bisogno, T. & Di Marzo, V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 16, 9–29 (2020).

    Article  PubMed  Google Scholar 

  16. Buisseret, B., Alhouayek, M., Guillemot-Legris, O. & Muccioli, G. G. Endocannabinoid and prostanoid crosstalk in pain. Trends Mol. Med. 25, 882–896 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Bauer, M. et al. Identification and quantification of a new family of peptide endocannabinoids (Pepcans) showing negative allosteric modulation at CB1 receptors. J. Biol. Chem. 287, 36944–36967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pamplona, F. A. et al. Anti-inflammatory lipoxin A4 is an endogenous allosteric enhancer of CB1 cannabinoid receptor. Proc. Natl Acad. Sci. USA 109, 21134–21139 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vallée, M. et al. Pregnenolone can protect the brain from cannabis intoxication. Science 343, 94–98 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bellocchio, L. et al. Bimodal control of stimulated food intake by the endocannabinoid system. Nat. Neurosci. 13, 281–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ruiz de Azua, I. et al. Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J. Clin. Invest. 127, 4148–4162 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Matias, I. et al. Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J. Clin. Endocrinol. Metab. 91, 3171–3180 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, Y., Jo, J., Chung, H. Y., Pothoulakis, C. & Im, E. Endocannabinoids in the gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G655–G666 (2016).

    Article  PubMed  Google Scholar 

  24. Kopach, O. et al. Cannabinoid receptors in submandibular acinar cells: functional coupling between saliva fluid and electrolytes secretion and Ca2+ signalling. J. Cell Sci. 125, 1884–1895 (2012).

    CAS  PubMed  Google Scholar 

  25. Mendizabal-Zubiaga, J. et al. Cannabinoid CB1 receptors are localized in striated muscle mitochondria and regulate mitochondrial respiration. Front. Physiol. 7, 476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kunos, G. & Osei-Hyiaman, D. Endocannabinoids and liver disease. IV. Endocannabinoid involvement in obesity and hepatic steatosis. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G1101–G1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Doyle, M. E. The role of the endocannabinoid system in islet biology. Curr. Opin. Endocrinol. Diabetes Obes. 18, 153–158 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Lutz, B., Marsicano, G., Maldonado, R. & Hillard, C. J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 16, 705–718 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Corcoran, L., Roche, M. & Finn, D. P. The role of the brain’s endocannabinoid system in pain and its modulation by stress. Int. Rev. Neurobiol. 125, 203–255 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Moreira, F. A. & Wotjak, C. T. Cannabinoids and anxiety. Curr. Top. Behav. Neurosci. 2, 429–450 (2010).

    Article  Google Scholar 

  31. Muguruza, C. et al. The motivation for exercise over palatable food is dictated by cannabinoid type-1 receptors. JCI Insight 4, 126190 (2019).

    Article  PubMed  Google Scholar 

  32. Soria-Gómez, E. et al. The endocannabinoid system controls food intake via olfactory processes. Nat. Neurosci. 17, 407–415 (2014).

    Article  PubMed  Google Scholar 

  33. Yazulla, S. Endocannabinoids in the retina: from marijuana to neuroprotection. Prog. Retin. Eye Res. 27, 501–526 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Scheen, A. J., Finer, N., Hollander, P., Jensen, M. D. & Van Gaal, L. F. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368, 1660–1672 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Mitchell, P. B. & Morris, M. J. Depression and anxiety with rimonabant. Lancet 370, 1671–1672 (2007).

    Article  PubMed  Google Scholar 

  36. Pi-Sunyer, F. X., Aronne, L. J., Heshmati, H. M., Devin, J. & Rosenstock, J. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. J. Am. Med. Assoc. 295, 761–775 (2006).

    Article  CAS  Google Scholar 

  37. Agudo, J. et al. Deficiency of CB2 cannabinoid receptor in mice improves insulin sensitivity but increases food intake and obesity with age. Diabetologia 53, 2629–2640 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Simon, V. & Cota, D. Mechanisms in endocrinology: Endocannabinoids and metabolism: past, present and future. Eur. J. Endocrinol. 176, R309–R324 (2017).

    Article  PubMed  Google Scholar 

  39. Melis, T. et al. The cannabinoid antagonist SR 141716A (Rimonabant) reduces the increase of extra-cellular dopamine release in the rat nucleus accumbens induced by a novel high palatable food. Neurosci. Lett. 419, 231–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Zangen, A., Solinas, M., Ikemoto, S., Goldberg, S. R. & Wise, R. A. Two brain sites for cannabinoid reward. J. Neurosci. 26, 4901–4907 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mazier, W. et al. mTORC1 and CB1 receptor signaling regulate excitatory glutamatergic inputs onto the hypothalamic paraventricular nucleus in response to energy availability. Mol. Metab. 28, 151–159 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. DiPatrizio, N. V. & Piomelli, D. The thrifty lipids: endocannabinoids and the neural control of energy conservation. Trends Neurosci. 35, 403–411 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Silvestri, C. & Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475–490 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Pagotto, U., Marsicano, G., Cota, D., Lutz, B. & Pasquali, R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev. 27, 73–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Koch, M. et al. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519, 45–50 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Morello, G. et al. Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via stimulation of endocannabinoid signaling. Proc. Natl Acad. Sci. USA 113, 4759–4764 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tam, J. et al. Role of adiponectin in the metabolic effects of cannabinoid type 1 receptor blockade in mice with diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 306, E457–E468 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Vettor, R. & Pagano, C. The role of the endocannabinoid system in lipogenesis and fatty acid metabolism. Best Pract. Res. Clin. Endocrinol. Metab. 23, 51–63 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Balsevich, G. et al. Role for fatty acid amide hydrolase (FAAH) in the leptin-mediated effects on feeding and energy balance. Proc. Natl Acad. Sci. USA 115, 7605–7610 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tam, J. et al. Peripheral cann-1 receptor blockade restores hypothalamic leptin signalling. Mol. Metab. 6, 1113–1125 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Drori, A. et al. CB1R regulates soluble leptin receptor levels via CHOP, contributing to hepatic leptin resistance. eLife 9, e60771 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  PubMed  Google Scholar 

  54. Palomba, L. et al. Negative regulation of leptin-induced reactive oxygen species (ROS) formation by cannabinoid CB1 receptor activation in hypothalamic neurons. J. Biol. Chem. 290, 13669–13677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Buettner, C. et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat. Med. 14, 667–675 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. You, T., Disanzo, B. L., Wang, X., Yang, R. & Gong, D. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise. Lipids Health Dis. 10, 194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Engeli, S. et al. Activation of the peripheral endocannabinoid system in human obesity. Diabetes 54, 2838–2843 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Di Marzo, V. et al. Changes in plasma endocannabinoid levels in viscerally obese men following a 1-year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors. Diabetologia 52, 213–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Tedesco, L. et al. Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes. Diabetes 57, 2028–2036 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang, S. et al. Cannabinoid receptor 1 signaling in hepatocytes and stellate cells does not contribute to NAFLD. J. Clin. Invest. 131, e152242 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Osei-Hyiaman, D. et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J. Clin. Invest. 118, 3160–3169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, Y. et al. Hepatocyte cannabinoid 1 receptor nullification alleviates toxin-induced liver damage via NF-κB signalling. Cell Death Dis. 11, 1044 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Irungbam, K. et al. Cannabinoid receptor 1 knockout alleviates hepatic steatosis by downregulating perilipin 2. Lab. Invest. 100, 454–465 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Jourdan, T. et al. Decreasing CB1 receptor signalling in Kupffer cells improves insulin sensitivity in obese mice. Mol. Metab. 6, 1517–1528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cinar, R. et al. Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides. Hepatology 59, 143–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Azar, S. et al. Reversal of diet-induced hepatic steatosis by peripheral CB1 receptor blockade in mice is p53/miRNA-22/SIRT1/PPARα dependent. Mol. Metab. 42, 101087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kimberly, W. T. et al. Metabolite profiling identifies anandamide as a biomarker of nonalcoholic steatohepatitis. JCI Insight 2, 92989 (2017).

    Article  PubMed  Google Scholar 

  68. Liu, J. et al. Hepatic cannabinoid receptor-1 mediates diet-induced insulin resistance via inhibition of insulin signalling and clearance in mice. Gastroenterology 142, 1218–1228.e1 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Margheritis, E. et al. Bile acid recognition by NAPE-PLD. ACS Chem. Biol. 11, 2908–2914 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Berland, C. et al. Identification of an endocannabinoid gut-brain vagal mechanism controlling food reward and energy homeostasis. Mol. Psychiatry 27, 2340–2354 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. DiPatrizio, N. V. Endocannabinoids and the gut–brain control of food intake and obesity. Nutrients 13, 1214 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burdyga, G., Varro, A., Dimaline, R., Thompson, D. G. & Dockray, G. J. Expression of cannabinoid CB1 receptors by vagal afferent neurons: kinetics and role in influencing neurochemical phenotype. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G63–G69 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bellocchio, L. et al. Activation of the sympathetic nervous system mediates hypophagic and anxiety-like effects of CB1 receptor blockade. Proc. Natl Acad. Sci. USA 110, 4786–4791 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Malenczyk, K. et al. CB1 cannabinoid receptors couple to focal adhesion kinase to control insulin release. J. Biol. Chem. 288, 32685–32699 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Jourdan, T. et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat. Med. 19, 1132–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, W. et al. Cannabinoids induce pancreatic β-cell death by directly inhibiting insulin receptor activation. Sci. Signal. 5, ra23 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Drori, A. et al. Cannabinoid-1 receptor regulates mitochondrial dynamics and function in renal proximal tubular cells. Diabetes Obes. Metab. 21, 146–159 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Udi, S. et al. Proximal tubular cannabinoid-1 receptor regulates obesity-induced CKD. J. Am. Soc. Nephrol. 28, 3518–3532 (2017).

    Article  CAS  Google Scholar 

  79. Zhao, L. et al. CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced renal injury in rats. BMC Nephrol. 22, 153 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Iannotti, F. A. et al. Genetic and pharmacological regulation of the endocannabinoid CB1 receptor in Duchenne muscular dystrophy. Nat. Commun. 9, 3950 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schuele, L. L. et al. Regulation of adult neurogenesis by the endocannabinoid-producing enzyme diacylglycerol lipase alpha (DAGLa). Sci. Rep. 12, 633 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Galve-Roperh, I. et al. Cannabinoid receptor signalling in progenitor/stem cell proliferation and differentiation. Prog. Lipid Res. 52, 633–650 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Ruhl, T., Karthaus, N., Kim, B. S. & Beier, J. P. The endocannabinoid receptors CB1 and CB2 affect the regenerative potential of adipose tissue MSCs. Exp. Cell Res. 389, 111881 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Bartova, A. & Birmingham, M. K. Effect of delta9-tetrahydrocannabinol on mitochondrial NADH-oxidase activity. J. Biol. Chem. 251, 5002–5006 (1976).

    Article  CAS  PubMed  Google Scholar 

  85. Chari-Bitron, A. & Bino, T. Effect of 1-tetrahydrocannabinol on ATPase activity of rat liver mitochondria. Biochem. Pharmacol. 20, 473–475 (1971).

    Article  CAS  PubMed  Google Scholar 

  86. Chiu, P., Karler, R., Craven, C., Olsen, D. M. & Turkanis, S. A. The influence of delta9-tetrahydrocannabinol, cannabinol and cannabidiol on tissue oxygen consumption. Res. Commun. Chem. Pathol. Pharmacol. 12, 267–286 (1975).

    CAS  PubMed  Google Scholar 

  87. Sarkar, C. & Ghosh, J. J. Effect of delta-9-tetrahydrocannabinol administration on the lipid constituents of rat brain subcellular fractions. J. Neurochem. 24, 381–385 (1975).

    Article  CAS  PubMed  Google Scholar 

  88. Rossato, M., Ion Popa, F., Ferigo, M., Clari, G. & Foresta, C. Human sperm express cannabinoid receptor Cb1, the activation of which inhibits motility, acrosome reaction, and mitochondrial function. J. Clin. Endocrinol. Metab. 90, 984–991 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Aquila, S. et al. Human sperm anatomy: ultrastructural localization of the cannabinoid1 receptor and a potential role of anandamide in sperm survival and acrosome reaction. Anat. Rec. (Hoboken) 293, 298–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Bénard, G. et al. Mitochondrial CB1 receptors regulate neuronal energy metabolism. Nat. Neurosci. 15, 558–564 (2012).

    Article  PubMed  Google Scholar 

  91. Wang, Q. et al. 5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions. Sci. Rep. 6, 37336 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Belous, A. et al. Mitochondrial P2Y-Like receptors link cytosolic adenosine nucleotides to mitochondrial calcium uptake. J. Cell. Biochem. 92, 1062–1073 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Kamnate, A. et al. Mitochondrial localization of cb1 in progesterone-producing cells of ovarian interstitial glands of adult mice. J. Histochem. Cytochem. 70, 251–257 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jimenez-Blasco, D. et al. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 583, 603–608 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Hebert-Chatelain, E. et al. A cannabinoid link between mitochondria and memory. Nature 539, 555–559 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Amoako, A. A. et al. Anandamide modulates human sperm motility: implications for men with asthenozoospermia and oligoasthenoteratozoospermia. Hum. Reprod. 28, 2058–2066 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Soria-Gomez, E. et al. Subcellular specificity of cannabinoid effects in striatonigral circuits. Neuron 109, 1513–1526.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Serrat, R. et al. Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration. Cell Rep. 37, 110133 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Hebert-Chatelain, E. et al. Cannabinoid control of brain bioenergetics: exploring the subcellular localization of the CB1 receptor. Mol. Metab. 3, 495–504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Morozov, Y. M. et al. Antibodies to cannabinoid type 1 receptor co-react with stomatin-like protein 2 in mouse brain mitochondria. Eur. J. Neurosci. 38, 2341–2348 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Harkany, T. & Horvath, T. L. (S)Pot on mitochondria: cannabinoids disrupt cellular respiration to limit neuronal activity. Cell Metab. 25, 8–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Busquets-García, A., Bains, J. & Marsicano, G. CB1 receptor signalling in the brain: extracting specificity from ubiquity. Neuropsychopharmacology 43, 4–20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pérez-Alvarez, A. & Araque, A. Astrocyte-neuron interaction at tripartite synapses. Curr. Drug Targets 14, 1220–1224 (2013).

    Article  PubMed  Google Scholar 

  105. Gutiérrez-Rodríguez, A. et al. Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia 66, 1417–1431 (2018).

    Article  PubMed  Google Scholar 

  106. Robin, L. M. et al. Astroglial CB1 receptors determine synaptic D-serine availability to enable recognition memory. Neuron 98, 935–944.e5 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Bosier, B. et al. Astroglial CB1 cannabinoid receptors regulate leptin signaling in mouse brain astrocytes. Mol. Metab. 2, 393–404 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Almeida, A., Moncada, S. & Bolaños, J. P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-pathway. Nat. Cell Biol. 6, 45–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Bolaños, J. P., Peuchen, S., Heales, S. J., Land, J. M. & Clark, J. B. Nitric oxide-mediated inhibition of the mitochondrial respiratory chain in cultured astrocytes. J. Neurochem. 63, 910–916 (1994).

    Article  PubMed  Google Scholar 

  110. Fiebig, C. et al. Mitochondrial dysfunction in astrocytes impairs the generation of reactive astrocytes and enhances neuronal cell death in the cortex upon photothrombotic lesion. Front. Mol. Neurosci. 12, 40 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bolaños, J. P., Almeida, A. & Moncada, S. Glycolysis: a bioenergetic or a survival pathway? Trends Biochem. Sci. 35, 145–149 (2010).

    Article  PubMed  Google Scholar 

  112. Mächler, P. et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23, 94–102 (2016).

    Article  PubMed  Google Scholar 

  113. Bonvento, G. & Bolaños, J. P. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 33, 1546–1564 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Suzuki, A. et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carrard, A. et al. Peripheral administration of lactate produces antidepressant-like effects. Mol. Psychiatry 23, 488 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Sena, L. A. & Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 417, 1–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Lopez-Fabuel, I. et al. Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl Acad. Sci. USA 113, 13063–13068 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Vicente-Gutierrez, C. et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat. Metab. 1, 201–211 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Guaras, A. M. & Enríquez, J. A. Building a beautiful beast: mammalian respiratory complex I. Cell Metab. 25, 4–5 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. De Rasmo, D. et al. Activation of the cAMP cascade in human fibroblast cultures rescues the activity of oxidatively damaged complex I. Free Radic. Biol. Med. 52, 757–764 (2012).

    Google Scholar 

  122. Patten, D. A. et al. Hypoxia-inducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrial-derived reactive oxygen species. Mol. Biol. Cell 21, 3247–3257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Semenza, G. L., Roth, P. H., Fang, H. M. & Wang, G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269, 23757–23763 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the late Federico Massa for his friendship. We thank Daniela Cota and Francis Chaouloff for critically reading the manuscript. We also thank all the members of A.B.-G.’s, J.P.B.’s and G.M.’s labs for useful discussions and for their invaluable support. The work of A.B.-G. is supported by: Agencia Estatal de Investigación-FEDER (RTI2018-093667-A-100); the ERC starting Grant (HighMemory, #948217); the IBRO Return Home Fellowships 2019 and the Ramon y Cajal programme (RYC-2017-21776) funded by MCIN/ AEI/10.13039/501100011033 and FSE). The work of J.P.B. is funded by the Agencia Estatal de Investigación (PID2019-105699RB-I00; PDC2021-121013-I00; RED2018‐102576‐T; MCIN/AEI/10.13039/501100011033 & European Union NextGenerationEU/PRTR), Plan Nacional de Drogas (Ministerio de Sanidad; 2020I028) and Junta de Castilla y León (CS/151P20 and Escalera de Excelencia CLU-2017-03). The work of G.M. is funded by: INSERM, European Research Council (Endofood, ERC–2010–StG–260515 and CannaPreg, ERC-2014-PoC-640923, MiCaBra, ERC-2017-AdG-786467), Fondation pour la Recherche Medicale (FRM, DRM20101220445), the Human Frontiers Science Program, Region Nouvelle Aquitaine, Agence Nationale de la Recherche (ANR, NeuroNutriSens ANR-13-BSV4-0006 and ORUPS ANR-16-CE37-0010-01 and BRAIN ANR-10-LABX-0043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arnau Busquets-García, Juan P. Bolaños or Giovanni Marsicano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Metabolism thanks Tibor Harkany, Vincenzo Di Marzo and Joseph Tam for their contribution to the peer review of this work. Primary handling editor: Alfredo Gimenez-Cassina in collaboration with the Nature Metabolism team.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busquets-García, A., Bolaños, J.P. & Marsicano, G. Metabolic Messengers: endocannabinoids. Nat Metab 4, 848–855 (2022). https://doi.org/10.1038/s42255-022-00600-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-022-00600-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing