Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice

Abstract

Although elevated activity of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) has been proposed to mediate comorbid depression in inflammatory disorders, its causative role has never been tested. We report that peripheral administration of lipopolysaccharide (LPS) activates IDO and culminates in a distinct depressive-like behavioral syndrome, measured by increased duration of immobility in both the forced-swim and tail suspension tests. Blockade of IDO activation either indirectly with the anti-inflammatory tetracycline derivative minocycline, that attenuates LPS-induced expression of proinflammatory cytokines, or directly with the IDO antagonist 1-methyltryptophan (1-MT), prevents development of depressive-like behavior. Both minocycline and 1-MT normalize the kynurenine/tryptophan ratio in the plasma and brain of LPS-treated mice without changing the LPS-induced increase in turnover of brain serotonin. Administration of L-kynurenine, a metabolite of tryptophan that is generated by IDO, to naive mice dose dependently induces depressive-like behavior. These results implicate IDO as a critical molecular mediator of inflammation-induced depressive-like behavior, probably through the catabolism of tryptophan along the kynurenine pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR et al. Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry 2005; 58: 175–189.

    Article  Google Scholar 

  2. Capuron L, Dantzer R . Cytokines and depression: the need for a new paradigm. Brain Behav Immun 2003; 17 (Suppl 1): S119–S124.

    Article  CAS  Google Scholar 

  3. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB et al. Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 2002; 26: 643–652.

    Article  CAS  Google Scholar 

  4. Widner B, Laich A, Sperner-Unterweger B, Ledochowski M, Fuchs D . Neopterin production, tryptophan degradation, and mental depression—what is the link? Brain Behav Immun 2002; 16: 590–595.

    Article  CAS  Google Scholar 

  5. Takikawa O, Tagawa Y, Iwakura Y, Yoshida R, Truscott RJ . Interferon-gamma-dependent/independent expression of indoleamine 2,3-dioxygenase. Studies with interferon-gamma-knockout mice. Adv Exp Med Biol 1999; 467: 553–557.

    Article  CAS  Google Scholar 

  6. Popov A, Abdullah Z, Wickenhauser C, Saric T, Driesen J, Hanisch FG et al. Indoleamine 2,3-dioxygenase-expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. J Clin Invest 2006; 116: 3160–3170.

    Article  CAS  Google Scholar 

  7. Fujigaki H, Saito K, Fujigaki S, Takemura M, Sudo K, Ishiguro H et al. The signal transducer and activator of transcription 1alpha and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways, and synergistic effect of several proinflammatory cytokines. J Biochem (Tokyo) 2006; 139: 655–662.

    Article  CAS  Google Scholar 

  8. Capuron L, Ravaud A, Neveu PJ, Miller AH, Maes M, Dantzer R . Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 2002; 7: 468–473.

    Article  CAS  Google Scholar 

  9. Yirmiya R . Endotoxin produces a depressive-like episode in rats. Brain Res 1996; 711: 163–174.

    Article  CAS  Google Scholar 

  10. Frenois F, Moreau M, O'Connor J, Lawson M, Micon C, Lestage J et al. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 2007; 32: 516–531.

    Article  CAS  Google Scholar 

  11. Moreau M, Lestage J, Verrier D, Mormede C, Kelley KW, Dantzer R et al. Bacille Calmette-Guerin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis 2005; 192: 537–544.

    Article  CAS  Google Scholar 

  12. Booij L, Van der Does AJ, Riedel WJ . Monoamine depletion in psychiatric and healthy populations: review. Mol Psychiatry 2003; 8: 951–973.

    Article  CAS  Google Scholar 

  13. Guillemin GJ, Smythe G, Takikawa O, Brew BJ . Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons. Glia 2005; 49: 15–23.

    Article  Google Scholar 

  14. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR . Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 1991; 56: 2007–2017.

    Article  CAS  Google Scholar 

  15. Muller N, Schwarz MJ . The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007; 12: 988–1000.

    Article  CAS  Google Scholar 

  16. Wichers MC, Koek GH, Robaeys G, Verkerk R, Scharpe S, Maes M . IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 2005; 10: 538–544.

    Article  CAS  Google Scholar 

  17. Nikodemova M, Watters JJ, Jackson SJ, Yang SK, Duncan ID . Minocycline down-regulates MHC II expression in microglia and macrophages through inhibition of IRF-1 and protein kinase C (PKC)alpha/betaII. J Biol Chem 2007; 282: 15208–15216.

    Article  CAS  Google Scholar 

  18. Yrjanheikki J, Keinanen R, Pellikka M, Hokfelt T, Koistinaho J . Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 1998; 95: 15769–15774.

    Article  CAS  Google Scholar 

  19. Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR et al. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Proc Natl Acad Sci USA 2001; 98: 14669–14674.

    Article  CAS  Google Scholar 

  20. Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature 2002; 417: 74–78.

    Article  CAS  Google Scholar 

  21. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002; 297: 1867–1870.

    Article  CAS  Google Scholar 

  22. Seo SK, Choi JH, Kim YH, Kang WJ, Park HY, Suh JH et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat Med 2004; 10: 1088–1094.

    Article  CAS  Google Scholar 

  23. Ueno A, Cho S, Cheng L, Wang J, Hou S, Nakano H et al. Transient upregulation of indoleamine 2,3-dioxygenase in dendritic cells by human chorionic gonadotropin downregulates autoimmune diabetes. Diabetes 2007; 56: 1686–1693.

    Article  CAS  Google Scholar 

  24. Kwidzinski E, Bunse J, Aktas O, Richter D, Mutlu L, Zipp F et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation. FASEB J 2005; 19: 1347–1349.

    Article  CAS  Google Scholar 

  25. Mormede C, Palin K, Kelley KW, Castanon N, Dantzer R . Conditioned taste aversion with lipopolysaccharide and peptidoglycan does not activate cytokine gene expression in the spleen and hypothalamus of mice. Brain Behav Immun 2004; 18: 186–200.

    Article  CAS  Google Scholar 

  26. Lestage J, Verrier D, Palin K, Dantzer R . The enzyme indoleamine 2,3-dioxygenase is induced in the mouse brain in response to peripheral administration of lipopolysaccharide and superantigen. Brain Behav Immun 2002; 16: 596–601.

    Article  CAS  Google Scholar 

  27. Porsolt RD . Animal models of depression: utility for transgenic research. Rev Neurosci 2000; 11: 53–58.

    Article  CAS  Google Scholar 

  28. Zhao C, Ling Z, Newman MB, Bhatia A, Carvey PM . TNF-alpha knockout and minocycline treatment attenuates blood–brain barrier leakage in MPTP-treated mice. Neurobiol Dis 2007; 26: 36–46.

    Article  CAS  Google Scholar 

  29. Zink MC, Uhrlaub J, DeWitt J, Voelker T, Bullock B, Mankowski J et al. Neuroprotective and anti-human immunodeficiency virus activity of minocycline. JAMA 2005; 293: 2003–2011.

    Article  CAS  Google Scholar 

  30. Ledeboer A, Sloane EM, Milligan ED, Frank MG, Mahony JH, Maier SF et al. Minocycline attenuates mechanical allodynia and proinflammatory cytokine expression in rat models of pain facilitation. Pain 2005; 115: 71–83.

    Article  CAS  Google Scholar 

  31. Tilley BC, Alarcon GS, Heyse SP, Trentham DE, Neuner R, Kaplan DA et al. Minocycline in rheumatoid arthritis. A 48-week, double-blind, placebo-controlled trial. MIRA Trial Group. Ann Intern Med 1995; 122: 81–89.

    Article  CAS  Google Scholar 

  32. Kelley KW, Bluthe RM, Dantzer R, Zhou JH, Shen WH, Johnson RW et al. Cytokine-induced sickness behavior. Brain Behav Immun 2003; 17 (Suppl 1): S112–S118.

    Article  CAS  Google Scholar 

  33. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW . From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 46–54.

    Article  CAS  Google Scholar 

  34. Konsman JP, Parnet P, Dantzer R . Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci 2002; 25: 154–159.

    Article  CAS  Google Scholar 

  35. Nikodemova M, Duncan ID, Watters JJ . Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IkappaBalpha degradation in a stimulus-specific manner in microglia. J Neurochem 2006; 96: 314–323.

    Article  CAS  Google Scholar 

  36. Robinson CM, Hale PT, Carlin JM . NF-kappa B activation contributes to indoleamine dioxygenase transcriptional synergy induced by IFN-gamma and tumor necrosis factor-alpha. Cytokine 2006; 35: 53–61.

    Article  CAS  Google Scholar 

  37. Cady SG, Sono M . 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch Biochem Biophys 1991; 291: 326–333.

    Article  CAS  Google Scholar 

  38. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 1998; 281: 1191–1193.

    Article  CAS  Google Scholar 

  39. Sakurai K, Zou JP, Tschetter JR, Ward JM, Shearer GM . Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 2002; 129: 186–196.

    Article  CAS  Google Scholar 

  40. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003; 9: 1269–1274.

    Article  CAS  Google Scholar 

  41. Mellor AL, Munn DH . IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 2004; 4: 762–774.

    Article  CAS  Google Scholar 

  42. Sanni LA, Thomas SR, Tattam BN, Moore DE, Chaudhri G, Stocker R et al. Dramatic changes in oxidative tryptophan metabolism along the kynurenine pathway in experimental cerebral and noncerebral malaria. Am J Pathol 1998; 152: 611–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guillemin GJ, Williams KR, Smith DG, Smythe GA, Croitoru-Lamoury J, Brew BJ . Quinolinic acid in the pathogenesis of Alzheimer's disease. Adv Exp Med Biol 2003; 527: 167–176.

    Article  CAS  Google Scholar 

  44. Dunn AJ, Chuluyan HE . Endotoxin elicits normal tryptophan and indolamine responses but impaired catecholamine and pituitary-adrenal responses in endotoxin-resistant mice. Life Sci 1994; 54: 847–853.

    Article  CAS  Google Scholar 

  45. Lacosta S, Merali Z, Anisman H . Behavioral and neurochemical consequences of lipopolysaccharide in mice: anxiogenic-like effects. Brain Res 1999; 818: 291–303.

    Article  CAS  Google Scholar 

  46. Swiergiel AH, Dunn AJ . Feeding, exploratory, anxiety- and depression-related behaviors are not altered in interleukin-6-deficient male mice. Behav Brain Res 2006; 171: 94–108.

    Article  CAS  Google Scholar 

  47. Zhu CB, Blakely RD, Hewlett WA . The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 2006; 31: 2121–2131.

    Article  CAS  Google Scholar 

  48. Lapin IP . Kynurenines as probable participants of depression. Pharmakopsychiatr Neuropsychopharmakol 1973; 6: 273–279.

    Article  CAS  Google Scholar 

  49. Mangoni A . The ‘kynurenine shunt’ and depression. Adv Biochem Psychopharmacol 1974; 11: 293–298.

    CAS  PubMed  Google Scholar 

  50. Schwarcz R . The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 2004; 4: 12–17.

    Article  CAS  Google Scholar 

  51. Nemeth H, Toldi J, Vecsei L . Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2005; 2: 249–260.

    Article  Google Scholar 

  52. Deak T, Bellamy C, D'Agostino LG, Rosanoff M, McElderry NK, Bordner KA . Behavioral responses during the forced swim test are not affected by anti-inflammatory agents or acute illness induced by lipopolysaccharide. Behav Brain Res 2005; 160: 125–134.

    Article  CAS  Google Scholar 

  53. Elewa HF, Hilali H, Hess DC, Machado LS, Fagan SC . Minocycline for short-term neuroprotection. Pharmacotherapy 2006; 26: 515–521.

    Article  CAS  Google Scholar 

  54. Jia L, Schweikart K, Tomaszewski J, Page JG, Noker PE, Buhrow SA et al. Toxicology and pharmacokinetics of 1-methyl-d-tryptophan: absence of toxicity due to saturating absorption. Food Chem Toxicol 2007; 46: 203–211.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants to RD (R01 MH 71349 and R01 MH 079829), KWK (R01 AG 029573) and post-doctoral training grant to JCO (T32 DK59802-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Dantzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connor, J., Lawson, M., André, C. et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14, 511–522 (2009). https://doi.org/10.1038/sj.mp.4002148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002148

Keywords

This article is cited by

Search

Quick links