Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice

Abstract

Dysregulation of the endocannabinoid system is known to interfere with emotional processing of stressful events. Here, we studied the role of cannabinoid receptor type 1 (CB1) signaling in stress-coping behaviors using the forced swim test (FST) with repeated exposures. We compared effects of genetic inactivation with pharmacological blockade of CB1 receptors both in male and female mice. In addition, we investigated potential interactions of the endocannabinoid system with monoaminergic and neurotrophin systems of the brain. Naive CB1 receptor-deficient mice (CB1−/−) showed increased passive stress-coping behaviors as compared to wild-type littermates (CB1+/+) in the FST, independent of sex. These findings were partially reproduced in C57BL/6N animals and fully reproduced in female CB1+/+ mice by pharmacological blockade of CB1 receptors with the CB1 receptor antagonist SR141716. The specificity of SR141716 was confirmed in female CB1−/− mice, where it failed to affect behavioral performance. Sensitivity to the antidepressants desipramine and paroxetine was preserved, but slightly altered in female CB1−/− mice. There were no genotype differences between CB1+/+ and CB1−/− mice in monoamine oxidase A and B activities under basal conditions, nor in monoamine content of hippocampal tissue after FST exposure. mRNA expression of vesicular glutamate transporter type 1 was unaffected in CB1−/− mice, but mRNA expression of brain-derived neurotrophic factor (BDNF) was reduced in the hippocampus. Our results suggest that impaired CB1 receptor function promotes passive stress-coping behavior, which, at least in part, might relate to alterations in BDNF function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Piomelli D . The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 2003; 4: 873–884.

    Article  CAS  PubMed  Google Scholar 

  2. Marsicano G, Goodenough S, Monory K, Hermann H, Eder M, Cannich A et al. CB1 cannabinoid receptors and on-demand defense against excitotoxicity. Science 2003; 302: 84–88.

    Article  CAS  PubMed  Google Scholar 

  3. Monory K, Massa F, Egertova M, Eder M, Blaudzun H, Westenbroek R et al. The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 2006; 51: 455–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Degroot A, Kofalvi A, Wade MR, Davis RJ, Rodrigues RJ, Rebola N et al. CB1 receptor antagonism increases hippocampal acetylcholine release: site and mechanism of action. Mol Pharmacol 2006; 70: 1236–1245.

    Article  CAS  PubMed  Google Scholar 

  5. Tzavara ET, Davis RJ, Perry KW, Li X, Salhoff C, Bymaster FP et al. The CB1 receptor antagonist SR141716A selectively increases monoaminergic neurotransmission in the medial prefrontal cortex: implications for therapeutic actions. Br J Pharmacol 2003; 138: 544–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gobbi G, Bambico FR, Mangieri R, Bortolato M, Campolongo P, Solinas M et al. Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis. Proc Natl Acad Sci USA 2005; 102: 18620–18625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wotjak CT . Role of endogenous cannabinoids in cognition and emotionality. Min Rev Med Chem 2005; 5: 659–670.

    Article  CAS  Google Scholar 

  8. Marsicano G, Wotjak CT, Azad SC, Bisogno T, Rammes G, Cascio MG et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002; 418: 530–534.

    Article  CAS  PubMed  Google Scholar 

  9. Kamprath K, Marsicano G, Tang J, Monory K, Bisogno T, Di Marzo et al. Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 2006; 26: 6677–6686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 2003; 9: 76–81.

    Article  CAS  PubMed  Google Scholar 

  11. Patel S, Hillard CJ . Pharmacological evaluation of cannabinoid receptor ligands in a mouse model of anxiety: further evidence for an anxiolytic role for endogenous cannabinoid signaling. J Pharmacol Exp Ther 2006; 318: 304–311.

    Article  CAS  PubMed  Google Scholar 

  12. Viveros MP, Marco EM, File SE . Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 2005; 81: 331–342.

    Article  CAS  PubMed  Google Scholar 

  13. Hill MN, Gorzalka BB . Is there a role for the endocannabinoid system in the etiology and treatment of melancholic depression? Behav Pharmacol 2005; 16: 333–352.

    Article  CAS  PubMed  Google Scholar 

  14. Haller J, Varga B, Ledent C, Freund TF . CB1 cannabinoid receptors mediate anxiolytic effects: convergent genetic and pharmacological evidence with CB1-specific agents. Behav Pharmacol 2004; 15: 299–304.

    Article  CAS  PubMed  Google Scholar 

  15. Haller J, Bakos N, Szirmay M, Ledent C, Freund TF . The effects of genetic and pharmacological blockade of the CB1 cannabinoid receptor on anxiety. Eur J Neurosci 2002; 16: 1395–1398.

    Article  CAS  PubMed  Google Scholar 

  16. Martin M, Ledent C, Parmentier M, Maldonado R, Valverde O . Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology 2002; 159: 379–387.

    Article  CAS  PubMed  Google Scholar 

  17. Griebel G, Stemmelin J, Scatton B . Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodents. Biol Psychiatry 2005; 57: 261–267.

    Article  CAS  PubMed  Google Scholar 

  18. Rodgers RJ, Evans PM, Murphy A . Anxiogenic profile of AM-251, a selective cannabinoid CB1 receptor antagonist, in plus-maze-naive and plus-maze-experienced mice. Behav Pharmacol 2005; 16: 405–413.

    Article  CAS  PubMed  Google Scholar 

  19. Haller J, Varga B, Ledent C, Barna I, Freund TF . Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice. Eur J Neurosci 2004; 19: 1906–1912.

    Article  CAS  PubMed  Google Scholar 

  20. Merikangas KR, Zhang HP, Avenevoli S, Acharyya S, Neuenschwander M, Angst J . Longitudinal trajectories of depression and anxiety in a prospective community study - The Zurich cohort study. Arch Gen Psychiatry 2003; 60: 993–1000.

    PubMed  Google Scholar 

  21. Witkin JM, Tzavara ET, Nomikos GG . A role for cannabinoid CB1 receptors in mood and anxiety disorders. Behav Pharmacol 2005; 16: 315–331.

    Article  CAS  PubMed  Google Scholar 

  22. Sanchis-Segura C, Cline BH, Marsicano G, Lutz B, Spanagel R . Reduced sensitivity to reward in CB1 knockout mice. Psychopharmacology 2004; 176: 223–232.

    Article  CAS  PubMed  Google Scholar 

  23. Cota D, Marsicano G, Lutz B, Vicennati V, Stalla GK, Pasquali R et al. Endogenous cannabinoid system as a modulator of food intake. Int J Obes 2003; 27: 289–301.

    Article  CAS  Google Scholar 

  24. Bilkei-Gorzo A, Racz I, Valverde O, Otto M, Michel K, Sarstre M et al. Early age-related cognitive impairment in mice lacking cannabinoid CB1 receptors. Proc Natl Acad Sci USA 2005; 102: 15670–15675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cota D, Steiner MA, Marsicano G, Cervino C, Herman JP, Grubler Y et al. Requirement of cannabinoid receptor type 1 for the basal modulation of hypothalamic-pituitary-adrenal axis function. Endocrinology 2006; 148: 1574–1581.

    Article  PubMed  Google Scholar 

  26. Aguado T, Monory K, Palazuelos J, Stella N, Cravatt B, Lutz B et al. The endocannabinoid system drives neural progenitor proliferation. FASEB J 2005; 19: 1704–1706.

    Article  CAS  PubMed  Google Scholar 

  27. Hungund BL, Vinod KY, Kassir SA, Basavarajappa BS, Yalamanchili R, Cooper TB et al. Upregulation of CB1 receptors and agonist-stimulated [S-35]GTP gamma S binding in the prefrontal cortex of depressed suicide victims. Mol Psychiatry 2004; 9: 184–190.

    Article  CAS  PubMed  Google Scholar 

  28. Vinod KY, Arango V, Xie S, Kassir SA, Mann JJ, Cooper TB et al. Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signaling in the prefrontal cortex of alcoholic suicide. Biol Psychiatry 2005; 57: 480–486.

    Article  CAS  PubMed  Google Scholar 

  29. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J . Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 2006; 295: 761–775.

    Article  CAS  PubMed  Google Scholar 

  30. Despres JP, Golay A, Sjostrom L . Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 2005; 353: 2121–2134.

    Article  CAS  PubMed  Google Scholar 

  31. Van Gaal LF, Rissanen AM, Scheen AJ, Ziegler O, Rossner S . Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005; 365: 1389–1397.

    Article  CAS  PubMed  Google Scholar 

  32. Cryan JF, Holmes A . The ascent of mouse: Advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  PubMed  Google Scholar 

  33. Hill MN, Gorzalka BB . Pharmacological enhancement of cannabinoid CB1 receptor activity elicits an antidepressant-like response in the rat forced swim test. Eur Neuropsychopharmacol 2005; 15: 593–599.

    Article  CAS  PubMed  Google Scholar 

  34. Jardinaud F, Crete D, Canestrelli C, Ledent C, Roques BP, Noble F . CB1 receptor knockout mice show similar behavioral modifications to wild-type mice when enkephalin catabolism is inhibited. Brain Res 2005; 1063: 77–83.

    Article  CAS  PubMed  Google Scholar 

  35. Kessler RC, Mcgonagle KA, Zhao SY, Nelson CB, Hughes M, Eshleman S et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric-disorders in the United-States—results from the National-Comorbidity-Survey. Arch Gen Psychiatry 1994; 51: 8–19.

    Article  CAS  PubMed  Google Scholar 

  36. Moutsimilli L, Farley S, Dumas S, El Mestikawy S, Giros B, Tzavara ET . Selective cortical VGLUT1 increase as a marker for antidepressant activity. Neuropharmacology 2005; 49: 890–900.

    Article  CAS  PubMed  Google Scholar 

  37. Shirayama Y, Chen ACH, Nakagawa S, Russell DS, Duman RS . Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002; 22: 3251–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei Q, Lu XY, Liu L, Schafer G, Shieh KR, Burke S et al. Glucocorticoid receptor overexpression in forebrain: a mouse model of increased emotional lability. Proc Natl Acad Sci USA 2004; 101: 11851–11856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Uriguen L, Perez-Rial S, Ledent C, Palomo T, Manzanares J . Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors. Neuropharmacology 2004; 46: 966–973.

    Article  CAS  PubMed  Google Scholar 

  40. Gobshtis N, Ben Shabat S, Fride E . Antidepressant-induced undesirable weight gain: prevention with rimonabant without interference with behavioral effectiveness. Eur J Pharmacol 2007; 554: 155–163.

    Article  CAS  PubMed  Google Scholar 

  41. Lucki I, O'Leary OF . Distinguishing roles for norepinephrine and serotonin in the behavioral effects of antidepressant drugs. J Clin Psychiatry 2004; 65: 11–24.

    CAS  PubMed  Google Scholar 

  42. Shih JC . Cloning, after cloning, knock-out mice, and physiological functions of MAO A and B. Neurotoxicology 2004; 25: 21–30.

    Article  CAS  PubMed  Google Scholar 

  43. Khaspekov LG, Verca MSB, Frumkina LE, Hermann H, Marsicano G, Lutz B . Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity. Eur J Neurosci 2004; 19: 1691–1698.

    Article  PubMed  Google Scholar 

  44. Cryan JF, Holmes A . The ascent of mouse: advances in modelling human depression and anxiety. Nat Rev Drug Discov 2005; 4: 775–790.

    Article  CAS  PubMed  Google Scholar 

  45. McArthur R, Borsini F . Animal models of depression in drug discovery: a historical perspective. Pharmacol Biochem Behav 2006; 84: 436–452.

    Article  CAS  PubMed  Google Scholar 

  46. Lucki I, Dalvi A, Mayorga AJ . Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 2001; 155: 315–322.

    Article  CAS  PubMed  Google Scholar 

  47. West AP . Neurobehavioral studies of forced swimming—the role of learning and memory in the forced swim test. Prog Neuropsychopharmacol Biol Psych 1990; 14: 863–877.

    Article  CAS  Google Scholar 

  48. Petit-Demouliere B, Chenu F, Bourin M . Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology 2005; 177: 245–255.

    Article  CAS  PubMed  Google Scholar 

  49. Urani A, Chourbaji S, Gass P . Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 2005; 29: 805–828.

    Article  CAS  PubMed  Google Scholar 

  50. Javitt DC . Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 2004; 9: 984–997.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou MJ, PanchukVoloshina N . A one-step fluorometric method for the continuous measurement of monoamine oxidase activity. Anal Biochem 1997; 253: 169–174.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Martin Purrio, Danka Dormann, Martina Reents, Anja Mederer and Jasmine Graehlert for valuable technical assistance. Part of this work was supported by the Deutsche Forschungsgemeinschaft (DFG) LU755/1-4 and by an AVENIR grant of INSERM in partnership with the Fondation Bettencourt-Schueller.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Steiner.

Additional information

Duality of interest.

The authors declare no duality of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, M., Wanisch, K., Monory, K. et al. Impaired cannabinoid receptor type 1 signaling interferes with stress-coping behavior in mice. Pharmacogenomics J 8, 196–208 (2008). https://doi.org/10.1038/sj.tpj.6500466

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500466

Keywords

This article is cited by

Search

Quick links