Issue 8, 2011

Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties

Abstract

Inspired by the self-cleaning lotus leaf, here we report the fabrication of flexible fluorinated silica nanofibrous membranes with biomimetic non-wettable surfaces by electrospinning blend solutions of poly(vinyl alcohol) (PVA) and silica gel in the presence of silica nanoparticles, followed by calcination and fluoroalkylsilane (FAS) modification. The resultant silica nanofibers exhibited a lotus-leaf-like structure with numerous nanoparticles decorated on the fiber surfaces due to the rapid phase separation in electrospinning and calcination processing. The content of silica nanoparticles incorporated into the fibers proved to be the key factor affecting the fiber surface morphology and wettability. The fluorinated silica fibrous membranes containing 38.8 wt% silica nanoparticle showed the highest water contact angle (WCA) of 155°, oil contact angle (OCA) of 143°, orange juice contact angle (OJCA) of 142°, and milk contact angle (MCA) of 137°. Additionally, the fluorinated silica membranes exhibited good flexibility and the flexibility was also characterized by KES-FB2S. We believe that this new class of inorganic membranes is particularly promising for the development of high-temperature filtration, novel easy-clean coatings, and even flexible electronics.

Graphical abstract: Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties

Article information

Article type
Paper
Submitted
18 Aug 2011
Accepted
08 Sep 2011
First published
21 Oct 2011

RSC Adv., 2011,1, 1482-1488

Nanoparticle decorated fibrous silica membranes exhibiting biomimetic superhydrophobicity and highly flexible properties

F. Zhao, X. Wang, B. Ding, J. Lin, J. Hu, Y. Si, J. Yu and G. Sun, RSC Adv., 2011, 1, 1482 DOI: 10.1039/C1RA00605C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements