J Pediatr Genet 2020; 09(04): 270-278
DOI: 10.1055/s-0039-3402048
Case Report
Georg Thieme Verlag KG Stuttgart · New York

Peruvian Newborn Male with 3p13 Deletion Syndrome Encompassing the FOXP1 Gene: Review of the Literature

1   Servicio de Genética y Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño, Lima, Perú
2   Facultad de Medicina Humana, Universidad Ricardo Palma, Lima, Perú
3   Facultad de Odontología, Universidad Científica del Sur, Lima, Perú
,
1   Servicio de Genética y Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño, Lima, Perú
,
1   Servicio de Genética y Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño, Lima, Perú
,
1   Servicio de Genética y Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño, Lima, Perú
4   Laboratorio de Genética Humana, Universidad Nacional Mayor de San Marcos, Lima, Perú
,
5   Hospital Antonio Lorena, Cusco, Perú
6   Escuela Profesional de Medicina Humana, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
,
6   Escuela Profesional de Medicina Humana, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú
› Author Affiliations
Funding This research was supported by Universidad Nacional de San Antonio Abad de Cusco.
Further Information

Publication History

09 August 2019

19 November 2019

Publication Date:
06 January 2020 (online)

Abstract

Copy number variation in loss of 3p13 is an infrequently reported entity characterized by hypertelorism, aniridia, microphthalmia, high palate, neurosensorial deafness, camptodactyly, heart malformation, development delay, autism spectrum disorder, seizures, and choanal atresia. The entity is caused probably by haploinsufficiency for FOXP1, UBA3, FAM19A1, and MITF. We report a newborn male with hypotonia, facial dysmorphism, heart malformation, and without clinical diagnosis; nevertheless, the use of appropriate genetic test, such us the chromosomal microarray analysis allowed identification of a copy number variant in loss of 5.5 Mb at chromosome 3 (p13-p14.1), that included 54 genes, encompassing FOXP1 gene. We compare the findings in our Peruvian patient to those of earlier reported patients; furthermore, add new signs for this entity.

Ethical Approval

The present study was performed following the ethical regulations of “Instituto Nacional de Salud del Niño,” and parental informed written consent was obtained for publication.


 
  • References

  • 1 Miller DT, Adam MP, Aradhya S. , et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86 (05) 749-764
  • 2 Goldenberg P. An update on common chromosome microdeletion and microduplication syndromes. Pediatr Ann 2018; 47 (05) e198-e203
  • 3 Stevenson R, Hall J. Human Malformations and Related Anomalies. 2nd ed. New York, NY: Oxford University Press; 2006
  • 4 Mohammad Y, Shawky RM, Soliman A, Ahmed M. Chromosomal study in newborn infants with congenital anomalies in Assiut University hospital: cross-sectional study. Egypt J Med Hum Genet 2011; 12: 79-90
  • 5 Sansović I, Ivankov A-M, Bobinec A, Kero M, Barišić I. Chromosomal microarray in clinical diagnosis: a study of 337 patients with congenital anomalies and developmental delays or intellectual disability. Croat Med J 2017; 58 (03) 231-238
  • 6 Mone F, Quinlan-Jones E, Ewer AK, Kilby MD. Exome sequencing in the assessment of congenital malformations in the fetus and neonate. Arch Dis Child Fetal Neonatal Ed 2019; 104 (04) F452-F456
  • 7 Dimitrov BI, Ogilvie C, Wieczorek D. , et al. 3p14 deletion is a rare contiguous gene syndrome: report of 2 new patients and an overview of 14 patients. Am J Med Genet A 2015; 167 (06) 1223-1230
  • 8 Palumbo O, D'Agruma L, Minenna AF. , et al. 3p14.1 de novo microdeletion involving the FOXP1 gene in an adult patient with autism, severe speech delay and deficit of motor coordination. Gene 2013; 516 (01) 107-113
  • 9 Hajek C, Wang J-C, Mahon LW, Martinez A, Saitta SC. Interstitial chromosome 3p14.1 deletion due to a maternal insertion: phenotype and association with balanced parental rearrangement. Mol Syndromol 2016; 7 (01) 43-48
  • 10 Schinzel A, Gundelfinger R, Dutly F, Baumer A, Binkert F. A 5-year-old girl with interstitial deletion of 3p14: clinical, psychologic, cytogenetic, and molecular studies. Am J Med Genet 1998; 77 (04) 302-305
  • 11 Carr CW, Moreno-De-Luca D, Parker C. , et al. Chiari I malformation, delayed gross motor skills, severe speech delay, and epileptiform discharges in a child with FOXP1 haploinsufficiency. Eur J Hum Genet 2010; 18 (11) 1216-1220
  • 12 Thevenon J, Monnier N, Callier P. , et al. Delineation of the 3p14.1p13 microdeletion associated with syndromic distal limb contractures. Am J Med Genet A 2014; 164A (12) 3027-3034
  • 13 Ţuţulan-Cunită AC, Papuc SM, Arghir A. , et al. 3p interstitial deletion: novel case report and review. J Child Neurol 2012; 27 (08) 1062-1066
  • 14 Yamamoto-Shimojima K, Okamoto N, Matsumura W, Okazaki T, Yamamoto T. Three Japanese patients with 3p13 microdeletions involving FOXP1. Brain Dev 2019; 41 (03) 257-262
  • 15 Le Fevre AK, Taylor S, Malek NH. , et al. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet A 2013; 161A (12) 3166-3175
  • 16 Schwarzbraun T, Ofner L, Gillessen-Kaesbach G. , et al. A new 3p interstitial deletion including the entire MITF gene causes a variation of Tietz/Waardenburg type IIA syndromes. Am J Med Genet A 2007; 143A (06) 619-624
  • 17 Pariani MJ, Spencer A, Graham Jr JM, Rimoin DLA. A 785kb deletion of 3p14.1p13, including the FOXP1 gene, associated with speech delay, contractures, hypertonia and blepharophimosis. Eur J Med Genet 2009; 52 (2-3): 123-127
  • 18 Horn D, Kapeller J, Rivera-Brugués N. , et al. Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Hum Mutat 2010; 31 (11) E1851-E1860
  • 19 Meerschaut I, Rochefort D, Revençu N. , et al. FOXP1-related intellectual disability syndrome: a recognisable entity. J Med Genet 2017; 54 (09) 613-623
  • 20 Mutlu-Albayrak H, Karaer K. Vocal cord immobility as a cause of aphonia in a child with 3p13p12 deletion syndrome encompassing FOXP1 gene. Int J Pediatr Otorhinolaryngol 2019; 117: 179-181
  • 21 Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet 2010; 6 (10) e1001154
  • 22 Tom Tang Y, Emtage P, Funk WD. , et al. TAFA: a novel secreted family with conserved cysteine residues and restricted expression in the brain. Genomics 2004; 83 (04) 727-734
  • 23 Wang X, Shen C, Chen X. , et al. Tafa-2 plays an essential role in neuronal survival and neurobiological function in mice. Acta Biochim Biophys Sin (Shanghai) 2018; 50 (10) 984-995
  • 24 Zheng C, Chen D, Zhang Y. , et al. FAM19A1 is a new ligand for GPR1 that modulates neural stem-cell proliferation and differentiation. FASEB J 2018 Doi: 10.1096/fj.201800020RRR (e-pub ahead of print)
  • 25 Gao Q, Yu G-Y, Shi J-Y. , et al. Neddylation pathway is up-regulated in human intrahepatic cholangiocarcinoma and serves as a potential therapeutic target. Oncotarget 2014; 5 (17) 7820-7832
  • 26 Osaka F, Kawasaki H, Aida N. , et al. A new NEDD8-ligating system for cullin-4A. Genes Dev 1998; 12 (15) 2263-2268
  • 27 Yokoyama S, Ito Y, Ueno-Kudoh H. , et al. A systems approach reveals that the myogenesis genome network is regulated by the transcriptional repressor RP58. Dev Cell 2009; 17 (06) 836-848
  • 28 Nobukuni Y, Watanabe A, Takeda K, Skarka H, Tachibana M. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A. Am J Hum Genet 1996; 59 (01) 76-83
  • 29 Shi C, Sakuma M, Mooroka T. , et al. Down-regulation of the forkhead transcription factor Foxp1 is required for monocyte differentiation and macrophage function. Blood 2008; 112 (12) 4699-4711
  • 30 Rousso DL, Gaber ZB, Wellik D, Morrisey EE, Novitch BG. Coordinated actions of the forkhead protein Foxp1 and Hox proteins in the columnar organization of spinal motor neurons. Neuron 2008; 59 (02) 226-240
  • 31 Rocca DL, Wilkinson KA, Henley JM. SUMOylation of FOXP1 regulates transcriptional repression via CtBP1 to drive dendritic morphogenesis. Sci Rep 2017; 7 (01) 877
  • 32 Tang B, Becanovic K, Desplats PA. , et al. Forkhead box protein p1 is a transcriptional repressor of immune signaling in the CNS: implications for transcriptional dysregulation in Huntington disease. Hum Mol Genet 2012; 21 (14) 3097-3111
  • 33 Lepp S, Anderson A, Konopka G. Connecting signaling pathways underlying communication to ASD vulnerability. Int Rev Neurobiol 2013; 113: 97-133
  • 34 Hamdan FF, Daoud H, Rochefort D. , et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet 2010; 87 (05) 671-678