Pharmacopsychiatry 2009; 42: S144-S152
DOI: 10.1055/s-0029-1216345
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Computational Approaches to the Neurobiology of Drug Addiction

S. H. Ahmed 1 , M. Graupner 2 , B. Gutkin 2
  • 1University Bordeaux 2, University Bordeaux 1, CNRS UMR 5227, Bordeaux, France
  • 2Group for Neural Theory, DEC, ENS, CNRS, Paris, France
Further Information

Publication History

Publication Date:
11 May 2009 (online)

Abstract

To increase our understanding of drug addiction – notably its pharmacological and neurobiological determinants – researchers have begun to formulate computational models of drug self-administration. Currently, one can roughly distinguish between three classes of models which all have in common to attribute to brain dopamine signaling a key role in addiction. The first class of models contains quantitative pharmacological models that describe the influence of pharmacokinetic and pharmacodynamic factors on drug self-administration. These models fail, however, to explain how the drug self-administration behavior is acquired and how it eventually becomes rigid and compulsive with extended drug use. Models belonging to the second class circumvent some of these limitations by modeling how drug use usurps the function of dopamine in reinforcement learning and action selection. However, despite their behavioral plausibility, these latter models lack neurobiological plausibility and ignore the potential role of opponent processes in addiction. The third class of models attempts to surmount these pitfalls by providing a more realistic picture of the midbrain dopamine circuitry and of the complex action of drugs of abuse in the output of this circuitry. Here we provide a brief overview of these different models to illustrate the potential contribution of mathematical modeling to our understanding of the neurobiology of drug addiction.

References

  • 1 Ahmed SH. Neuroscience. Addiction as compulsive reward prediction.  Science. 2004;  306 1901-1902
  • 2 Ahmed SH. Imbalance between drug and non-drug reward availability: a major risk factor for addiction.  Eur. J. Pharmacol. 2005;  526 9-20
  • 3 Ahmed SH, Kenny PJ, Koob GF. et al . Neurobiological evidence for hedonic allostasis associated with escalating cocaine use.  Nat. Neurosci. 2002;  5 625-626
  • 4 Ahmed SH, Koob GF. Transition from moderate to excessive drug intake: change in hedonic set point.  Science. 1998;  282 298-300
  • 5 Ahmed SH, Koob GF. Transition to drug addiction: a negative reinforcement model based on an allostatic decrease in reward function.  Psychopharmacology. 2005;  180 473-490
  • 6 Ahmed SH, Lin D, Koob GF. et al . Escalation of cocaine self-administration does not depend on altered cocaine-induced nucleus accumbens dopamine levels.  J. Neurochem. 2003;  86 102-113
  • 7 Bauco P, Wise RA. Synergistic effects of cocaine with lateral hypothalamic brain stimulation reward: lack of tolerance or sensitization.  J. Pharmacol. Exp. Ther. 1997;  283 1160-1167
  • 8 Beiser DG, Hua SE, Houk JC. Network models of the basal ganglia.  Curr Opin Neurobiol. 1997;  7 185-190
  • 9 Bobashev GV, Costenbader EM, Gutkin BS. Comprehensive Mathematical Modeling in Addiction Sciences.  Drug Alcohol Depend. 2007;  289 102-106
  • 10 Buisson B, Bertrand D. Nicotine addiction: the possible role of functional upregulation.  Trends Pharmacol Sci. 2002;  23 130-136
  • 11 Champtiaux N, Gotti C, Cordero-Erausquin M. et al . Subunit composition of functional nicotinic receptors in dopaminergic neurons investigated with knock-out mice.  J Neurosci. 2003;  23 7820-7829
  • 12 Changeux JP, Bertrand D, Corringer PJ. et al . Brain nicotinic receptors: structure and regulation, role in learning and reinforcement.  Brain Res Brain Res Rev. 1998;  26 198-216
  • 13 Cho RY, Nystrom LE, Brown ET. et al . Mechanisms underlying dependencies of performance on stimulus history in a two-alternative forced-choice task.  Cogn. Affect Behav. Neurosci. 2002;  2 283-299
  • 14 Christie MJ, Bridge S, James LB. et al . Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area.  Brain Res. 1985;  333 169-172
  • 15 Cornwall J, Cooper JD, Phillipson OT. Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat.  Brain Res Bull. 1990;  25 271-284
  • 16 Corrigall WA, Coen KM, Adamson KL. Self-administered nicotine activates the mesolimbic dopamine system through the ventral tegmental area.  Brain Res. 1994;  653 278-284
  • 17 Dani J, Heinemann S. Molecular and cellular aspects of nicotine abuse.  Neuron. 1996;  16 905-908
  • 18 Dani JA, Ji D, Zhou FM. Synaptic plasticity and nicotine addiction.  Neuron. 2001;  31 349-352
  • 19 David V, Besson M, Changeux JP. et al . Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: dependence on cholinergic nicotinic and dopaminergic D1 receptors.  Neuropharmacology. 2006;  50 1030-1040
  • 20 Daw ND, O’Doherty JP, Seymour B. et al . Cortical substrates for exploratory decisions in humans.  Nature. 2006;  441 876-879
  • 21 Dehaene S, Changeux JP. Reward-dependent learning in neuronal networks for planning and decision making.  Prog. Brain Res. 2000;  126 217-229
  • 22 Dehaene S, Kerszberg M, Changeux JP. A neuronal model of a global workspace in effortful cognitive tasks.  Proc. Natl. Acad. Sci. USA. 1998;  95 14529-14534
  • 23 Di Chiara G. Drug addiction as a dopamine-dependent associative learning disorder.  European J. Pharmacology. 1999;  375 13-30
  • 24 Donny EC. et al . Nicotine self-administration in rats on a progressive ratio schedule of reinforcement.  Psychopharmacology (Berl). 1999;  147 135-142
  • 25 Donny EC, Caggiula AR, Rowell PP. et al . Nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding.  Psychopharmacology (Berl). 2000;  151 392-405
  • 26 Garzón M, Vaughan RA, Uhl GR. et al . Cholinergic axon terminals in the ventral tegmental area target a subpopulation of neurons expressing low levels of the dopamine transporter.  J Comp Neurol. 1999;  410 197-210
  • 27 Gotti C, Moretti M, Gaimarri A. et al . Heterogeneity and complexity of native brain nicotinic receptors.  Biochem Pharmacol. 2007;  74 1102-1111
  • 28 Granon S, Faure P, Changeux JP. Executive and social behaviors under nicotinic receptor regulation.  Proc. Natl. Acad. Sci. USA. 2003;  100 9596-9601
  • 29 Gutkin BS, Dehaene S, Changeux JP. A neurocomputational hypothesis for nicotine addiction.  Proc Natl Acad Sci USA. 2006;  103 1106-1111
  • 30 Henningfield JE, Stapleton JM, Benowitz NL. et al . Higher levels of nicotine in arterial than in venous blood after cigarette smoking.  Drug Alcohol Depend. 1993;  33 23-29
  • 31 Hernandez G, Hamdani S, Rajabi H. et al . Prolonged rewarding stimulation of the rat medial forebrain bundle: neurochemical and behavioral consequences.  Behav. Neurosci. 2006;  120 888-904
  • 32 Johnson SW, North RA. Two types of neurone in the rat ventral tegmental area and their synaptic inputs.  J Physiol. 1992;  450 455-468
  • 33 Kalivas PW, Churchill L, Klitenick MA. GABA and enkephalin projection from the nucleus accumbens and ventral pallidum to the ventral tegmental area.  Neuroscience. 1993;  57 1047-1060
  • 34 Kenny PJ, Chen SA, Kitamura O. et al . Conditioned withdrawal drives heroin consumption and decreases reward sensitivity.  J. Neurosci. 2006;  26 5894-5900
  • 35 Klink R, de Kerchove d’Exaerde A, Zoli M. et al . Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei.  J Neurosci. 2001;  21 1452-1463
  • 36 Koob GF, Le Moal M. Drug abuse: hedonic homeostatic dysregulation.  Science. 1997;  278 52-58
  • 37 Lenoir M, Ahmed SH. Supply of a nondrug substitute reduces escalated heroin consumption.  Neuropsychopharmacology. 2008;  33 2272-2282
  • 38 Lenoir M, Serre F, Cantin L. et al . Intense sweetness surpasses cocaine reward.  PLoS ONE. 2007;  2 e698
  • 39 Mameli-Engvall M, Evrard A, Pons S. et al . Hierarchical control of dopamine neuron-firing patterns by nicotinic receptors.  Neuron. 2006;  50 911-921
  • 40 Mansvelder HD, McGehee DS. Long-term potentiation of excitatory inputs to brain reward areas by nicotine.  Neuron. 2000;  27 349-357
  • 41 Mansvelder HD, Keath JR, MacGehee DS. Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas.  Neuron. 2002;  33 905-919
  • 42 Mansvelder HD, Rover MD, MacGehee DS. et al . Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction.  Eur J Pharmacol. 2003;  480 117-123
  • 43 Martellotta MC, Kuzmin A, Zvartau E. et al . Isradipine inhibits nicotine intravenous self-administration in drug-naive mice.  Pharmacol Biochem Behav. 1995;  52 271-274
  • 44 Maskos U, Molles BE, Pons S. et al . Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors.  Nature. 2005;  436 103-107
  • 45 Mateo Y, Lack CM, Morgan D. et al . Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self-administration and deprivation.  Neuropsychopharmacology. 2005;  30 2455-2463
  • 46 McClure SM, Daw ND, Montague PR. A computational substrate for incentive salience.  Trends in Neurosciences. 2003;  26 423-428
  • 47 Montague PR, Dayan P, Sejnowski TJ. A framework for mesencephalic dopamine systems based on predictive Hebbian learning.  J. Neurosci. 1996;  16 1936-1947
  • 48 Montague PR, Hyman SE, Cohen JD. Computational roles for dopamine in behavioural control.  Nature. 2004;  431 760-767
  • 49 Nashmi R, Xiao C, Deshpande P. et al . Chronic nicotine cell specifically upregulates functional alpha 4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path.  J Neurosci. 2007;  27 8202-8218
  • 50 Niv Y, Schoenbaum G. Dialogues on prediction errors.  Trends Cogn Sci. 2008;  12 265-272
  • 51 Norman AB, Tsibulsky VL. The compulsion zone: a pharmacological theory of acquired cocaine self-administration.  Brain Res. 2006;  1116 143-152
  • 52 Oleson EB, Roberts DC. Behavioral economic assessment of price and cocaine consumption following self-administration histories that produce escalation of either final ratios or intake.  Neuropsychopharmacology. 2009;  34 796-804
  • 53 Otani S, Daniel H, Roisin M-P. et al . Dopaminergic modulation of long-term synaptic plasticity in rat prefrontal neurons.  Cereb Cortex. 2003;  13 1251-1256
  • 54 Panlilio LV, Thorndike EB, Schindler CW. A stimulus-control account of regulated drug intake in rats.  Psychopharmacology. 2008;  196 441-450
  • 55 Picciotto MR, Zoli M, Rimondini R. et al . Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine.  Nature. 1998;  391 173-177
  • 56 Pidoplichko VI, DeBiasi M, Williams JT. et al . Nicotine activates and desensitizes midbrain dopamine neurons.  Nature. 1997;  390 401-404
  • 57 Rahman S, Zhang J, Engleman EA. et al . Neuroadaptive changes in the mesoaccumbens dopamine system after chronic nicotine self-administration: a microdialysis study.  Neuroscience. 2004;  129 415-424
  • 58 Rasmussen T, Swedberg MD. Reinforcing effects of nicotinic compounds: intravenous self-administration in drug-naive mice.  Pharmacol Biochem Behav. 1998;  60 567-573
  • 59 Redish AD. Addiction as a computational process gone awry.  Science. 2004;  306 1944-1947
  • 60 Redish AD, Jensen S, Johnson A. A unified framework for addiction: vulnerabilities in the decision process.  Behav Brain Sci. 2008;  31 415-437 , ; discussion 437–487
  • 61 Reynolds JN, Wickens JR. Dopamine-dependent plasticity of corticostriatal synapses.  Neural Netw. 2002;  15 507-521
  • 62 Risner ME, Goldberg SR. A comparison of nicotine and cocaine self-administration in the dog: fixed-ratio and progressive-ratio schedules of intravenous drug infusion.  J Pharmacol Exp Ther. 1983;  224 319-326
  • 63 Robinson TE, Berridge KC. Addiction.  Annu Rev Psychol. 2003;  54 25-53
  • 64 Schultz W. Multiple reward signals in the brain.  Nat Rev Neurosci. 2000;  1 199-207
  • 65 Schultz W. Reward signaling by dopamine neurons.  Neuroscientist. 2001;  7 293-302
  • 66 Semba K, Fibiger HC. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study.  J Comp Neurol. 1992;  323 387-410
  • 67 Shoaib M, Schindler CW, Goldberg SR. Nicotine self-administration in rats: strain and nicotine pre-exposure effects on acquisition.  Psychopharmacology (Berl). 1997;  129 35-43
  • 68 Sizemore GM, Martin TJ. Toward a mathematical description of dose-effect functions for self-administered drugs in laboratory animal models.  Psychopharmacology. 2000;  153 57-66
  • 69 Sughondhabirom A, Jain D, Gueorguieva R. et al . A paradigm to investigate the self-regulation of cocaine administration in humans.  Psychopharmacology. 2005;  180 436-446
  • 70 Thomsen M, Hall FS, Uhl GR. et al . Dramatically decreased cocaine self-administration in dopamine but not serotonin transporter knock-out mice.  J Neurosci. 2009;  29 1087-1092
  • 71 Tsibulsky VL, Norman AB. Satiety threshold: a quantitative model of maintained cocaine self-administration.  Brain Res. 1999;  839 85-93
  • 72 Usher M, MacClelland JL. The time course of perceptual choice: the leaky, competing accumulator model.  Psychol. Rev. 2001;  108 550-592
  • 73 Volkow ND, Wang GJ, Fowler JS. et al . Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects.  Nature. 1997;  386 830-833
  • 74 Wise RA, Newton P, Leeb K. et al . Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats.  Psychopharmacology. 1995;  120 10-20
  • 75 Yokel RA, Pickens R. Drug level of d- and l-amphetamine during intravenous self-administration.  Psychopharmacologia. 1974;  34 255-264
  • 76 Zittel-Lazarini A, Cador M, Ahmed SH. A critical transition in cocaine self-administration: behavioral and neurobiological implications.  Psychopharmacology. 2007;  192 337-346

Correspondence

B. Gutkin

Group for Neural Theory

DEC

ENS-Paris and College de France

3 rue d'Ulm

75005 Paris

France

Phone: +33/01/44 27 13 69

Fax: +33/01/44 27 13 65

Email: boris.gutkin@gmail.com

    >