Even-odd effects of the maximal total kinetic energy (Kmax) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of 235U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, Kmax is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher Kmax-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher Kmax-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between Kmax and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

1.
W.
Lang
,
H.-G.
Clerc
,
H.
Wohlfarth
,
H.
Schrader
and
K.-H.
Schmidt
,
Nucl. Phys. A
345
,
34
71
(
1980
).
2.
T.D.
Thomas
,
W.M.
Gibson
and
J.G.
Safford
,
IAEA. Proc. of Symp. of Physics and Chemistry of Fission
,
Vienna
, (
1965
).
3.
H.A.
Nifenecker
,
J.
Blachot
,
J.P.
Bocquet
,
R.
Brissot
,
J.
Crançon
,
C.
Hamelin
,
G.
Mariolopoulos
and
C
Ristori
,
IAEA. Proc. of Symp. of Physics and Chemistry of Fission,
Jülich
,
1979
, (
IAEA
,
Vienna, Austria
,
1980
), Vol.
2
, pp
35
64
4.
C.
Signarbieux
,
M.
Montoya
,
M.
Ribrag
,
C.
Mazur
,
C.
Guet
,
P.
Perrin
, and
M.
Maurel
,
J. Physique Lett.
42
,
L
437
(
1981
).
5.
M.
Montoya
, Ph.D. thesis,
Paris-Sud University
,
Orsay
,
1981
.
6.
7.
H.
Nifenecker
,
G.
Mariolopoulos
and
J.P.
Bocquet
,
J. Physique Lett.
42
,
527
529
(
1981
).
8.
F.
Gönnenwein
and
F.
Börig
,
Nucl. Phys. A
530
,
27
57
(
1991
).
9.
M.
Montoya
,
Z. Phys. A – Atoms and Nuclei
319
,
219
225
(
1984
).
10.
G.
Simon
,
J.
Trochon
and
C.
Signarbieux
,
Fission Meeting
,
Arcachon
(
France
),
1986
, available at http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/18/081/18081829.pdf
11.
G.
Audi
and
A.H.
Wapstra
,
Nucl. Phys. A
565
,
1
65
(
1993
).
12.
F.
Gönnenwein
,
Physics Procedia
47
,
107
114
(
2013
).
13.
M.
Montoya
,
R.W.
Hasse
and
P.
Koczon
,
Z. Phys. A – Atoms and Nuclei
325
,
357
362
(
1986
).
14.
M.
Montoya
,
Revista Mexicana de Física
60
,
350
356
(
2014
).
15.
J.L.
Sida
,
P.
Armbruster
,
M.
Bernas
,
J.P.
Bocquet
,
R.
Brissot
and
H.R.
Faust
,
Nucl. Phys. A
502
,
233c
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.