Skip to main content

Advertisement

Log in

Individual vulnerability to substance abuse and affective disorders: Role of early environmental influences

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

One of the most important questions raised by modern psychiatry and experimental psychopathology is the origin of mental diseases. More concisely, clinical and experimental neurosciences are increasingly concerned with the factors that render one individual more vulnerable than another to a given pathological outcome. Animal models are now available to understand the sources of individual differences for specific phenotypes prone to behavioral disadaptations.

Over the last 10 years, we have explored the consequences of environmental perinatal maniqulations in the rat. We have shown that prenatal stress is at the origin of a wide range of physiological and behavioral aberrances such as alterations in the activity of the hormonal stress axis, increased vulnerability to drug of abuse, emotional liability, cognitive impairments and predisposition to pathological aging. Taken together, these abnormalities define a bio-behavioral syndrome. Furthermore, the cognitive disabilities observed in prenatally-stressed rats were recently related to an alteration of neurogenesis in the dentate gyrus, thus confirming the impact of early life events on brain morphology. A second model (handling model) has also been developed in which pups are briefly separated from their mothers during early postnatal life. In contrast with prenatallystressed animals, handled rats exhibited a reduced emotion response when confronted with novel situations and were protected against age-induced impairments of both the hormonal stress axis and cognitive functions.

Taken together, the results of these investigations show that the bio-behavioral phenotype that characterizes each individual is strongly linked to the nature and timing of perinatal experience. Furthermore, data collected in prenatally-stressed animals indicate that this model could be used profitably to understand the etiology and pathophysiology of affective disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Altman, J. and Das, G.D. (1965) “Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats”, J. Comp. Neurol. 124, 319–335.

    PubMed  CAS  Google Scholar 

  • Andreatini, R. and Leite, J.R. (1994) “The effect of corticosterone in rats submitted to the elevated plus-maze and to pentylenetetrazol-induced convulsions”, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 18, 1333–1347.

    CAS  Google Scholar 

  • Baez, M. and Volosin, M. (1994) “Corticosterone influences forced swim-induced immobility”, Pharmacol. Biochem. Behav. 49, 729–736.

    PubMed  CAS  Google Scholar 

  • Barbazanges, A., Piazza, P.V., Le Moal, M. and Maccari, S. (1996) “Maternal glucocorticoid secretion mediates long-term effects of prenatal stress”, J. Neurosci. 16, 3943–3949.

    PubMed  CAS  Google Scholar 

  • Barden, N., Reul, J.M. and Holsboer, F. (1995) “Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system?”, Trends Neurosci. 18, 6–11.

    PubMed  CAS  Google Scholar 

  • Bardo, M.T., Bevins, R.A., Klebaur, J.E., Crooks, P.A. and Dwoskin, L.P. (1997) “(−)-Nornicotine partially substitutes for (+)-amphetamine in a drug discrimination paradigm in rats”, Pharmacol. Biochem. Behav. 58, 1083–1087.

    PubMed  CAS  Google Scholar 

  • Bauman, R.A. and Kant, G.J. (1992) “Circadian effects of escapable and inescapable shock on the food intake and wheelrunning of rats”, Physiol. Behav. 51, 167–174.

    PubMed  CAS  Google Scholar 

  • Baxter, M.G. and Gallagher, M. (1996) “Neurobiological substrates of behavioral decline: models and data analytic strategies for individual differences in aging”, Neurobiol. Aging. 17, 491–495.

    PubMed  CAS  Google Scholar 

  • Birrell, C.E. and Balfour, D.J. (1998) “The influence of nicotine pretreatment on mesoaccumbens dopamine overflow and locomotor responses to d-amphetamine”, Psychopharmacology (Berl.) 140, 142–149.

    CAS  Google Scholar 

  • Bohn, M.C., O'Banion, M.K., Young, D.A., Giuliano, R., Hussain, S., Dean, D.O. and Cunningham, L.A. (1994) “In vitro, studies of glucocorticoid effects on neurons and astrocytes”, Ann. N.Y. Acad. Sci. 746, 243–258, discussion, 258–9, 289–93.

    PubMed  CAS  Google Scholar 

  • Bradbury, M.J., Akana, S.F. and Dallman, M.F. (1994) “Roles of type I and II corticosteroid receptors in regulation of basal activity in the hypothalamo-pituitary-adrenal axis during the diurnal trough and the peak: evidence for a nonadditive effect of combined receptor occupation”, Endocrinology 134, 1286–1296.

    PubMed  CAS  Google Scholar 

  • Cador, M., Cole, B.J., Koob, G.F., Stinus, L. and Le Moal, M. (1993) “Central administration of corticotropin releasing factor induces long- term sensitization to d-amphetamine”, Brain Res. 606, 181–186.

    PubMed  CAS  Google Scholar 

  • Cameron, H.A., Woolley, C.S., McEwen, B.S. and Gould, E. (1993) “Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat”, Neuroscience 56, 337–344.

    PubMed  CAS  Google Scholar 

  • Cintra, A., Solfrini, V., Bunnemann, B., Okret, S., Bortolotti, F., Gustafsson, J.A. and Fuxe, K. (1993) “Prenatal development of glucocorticoid receptor gene expression and immunoreactivity in the rat brain and pituitary gland: a combined in situ hybridization and immunocytochemical analysis,”, Neuroendocrinology 57, 1133–1147.

    PubMed  CAS  Google Scholar 

  • Dallman, M.F., Levin, N., Cascio, C.S. Akana, S.F., Jacobson, L. and Kuhn, R.W. (1989) “Pharmacological evidence that the inhibition of diurnal adrenocorticotropin secretion by corticosteroids is mediated via type I corticosterone-preferring receptors”, Endocrinology 124, 2844–2850.

    PubMed  CAS  Google Scholar 

  • Deguchi, T. (1975) “Ontogenesis of a biological clock for serotonin: acetyl coenzyme A N-acetyltransferase in pineal gland of rat”, Proc. Natl Acad. Sci. USA 72, 2814–2818.

    PubMed  CAS  Google Scholar 

  • De Kloet, E.R. and Reul, J.M. (1987) “Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems”, Psychoneuroendocrinology 12, 83–105.

    PubMed  Google Scholar 

  • De Kloet E.R., Rosenfeld, P., Van Eekelen, J.A., Sutanto, W. and Levine, S. (1988) “Stress, glucocorticoids and development”, Prog. Brain Res. 73, 101–120.

    PubMed  Google Scholar 

  • Delfs, J.M., Schreiber, L. and Kelley, A.E. (1990) “Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat”, J. Neurosci. 10, 303–310.

    PubMed  CAS  Google Scholar 

  • Dellu, F., Mayo, W., Vallée, M., Maccari, S., Piazza, P.V., Le Moal, M. and Simon, H. (1996) “Behavioral reactivity to novelty during youth as a predictive factor of stress-induced corticosterone secretion in the elderly—a life-span study in rats”, Psychoneuroendocrinology 21, 441–453.

    PubMed  CAS  Google Scholar 

  • Deminiere, J.M., Piazza P.V., Guegan, G., Abrous, N., Maccari, S., Le Moal, M. and Simon, H. (1992) “Increased locomotor response to novelty and propensity to intravenous amphetamine self-administration in adult offspring of stressed mothers”, Brain Res. 586, 135–139.

    PubMed  CAS  Google Scholar 

  • Denenberg, V.H. (1980) “General systems theory, brain organization, and early experiences”, Am. J. Physiol. 238, R3-R13.

    PubMed  CAS  Google Scholar 

  • Deroche, V., Piazza, P.V. Casolini, P., Maccari, S., Le Moal, M. and Simon, H. (1992) “Stress-induced sensitization to amphetamine and morphine psychomotor effects depend on stress-induced corticosterone secretion”, Brain Res. 598, 343–348.

    PubMed  CAS  Google Scholar 

  • Deroche, V., Marinelli, M., Maccari, S., Le Moal, M., Simon, H. and Piazza, P.V. (1995) “Stress-induced sensitization and glucocorticoids I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion”, J. Neurosci. 15, 7181–7188.

    PubMed  CAS  Google Scholar 

  • Diaz, R., Brown, R.W. and Seckl, J.R. (1998) “Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11 betahydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions”, J. Neurosci. 18, 2570–2580.

    PubMed  CAS  Google Scholar 

  • Glover, V. (1997) “Maternal stress or anxiety in pregnancy and emotional development of the child”, Br. J. Psychiatry 171, 105–106.

    PubMed  CAS  Google Scholar 

  • Gould, E., Cameron, H.A., Daniels, D.C., Woolley C.s. and McEwen, B.S. (1992) “Adrenal hormones suppress cell division in the adult rat dentate gyrus”, J. Neurosci. 12, 3642–3650.

    PubMed  CAS  Google Scholar 

  • Gould, E., Beylin, A., Tanapat, P., Reeves, A. and Shors, T.J. (1999a) “Learning enhances adult neurogenesis in the hippocampal formation [see comments]”, Nat. Neurosci. 2, 260–265.

    PubMed  CAS  Google Scholar 

  • Gould, E., Tanapat, P., Hastings, N.B. and Shors, T.J. (1999b) “Neurogenesis in adulthood: a possible role in learning”, Trends Cognit. Sci. 3, 186–192.

    Google Scholar 

  • Graham, Y.P., Heim, C., Goodman, S.H., Miller, A.H. and Nemeroff, C.B. (1999) “The effects of neonatal stress on brain development: implications for psychopathology”, Dev. Psychopathol. 11, 545–565.

    PubMed  CAS  Google Scholar 

  • Hall, C.S. (1934) “Drive and emotionality factors associated with adjustment in the rat”, J Comp. Psychol. 17, 89–108.

    Google Scholar 

  • Hassan, A.H., Patchev, V.K., von Rosenstiel, P., Holsboer, F. and Almeida, O.F. (1999) “Plasticity of hippocampal corticosteroid receptors during aging in the rat”, FASEB J. 13, 115–122.

    PubMed  CAS  Google Scholar 

  • Hayashi, A., Nagaoka, M., Yamada, K., Ichitani, Y., Miake, Y. and Okado, N. (1998) “Maternal stress induces synaptic loss and developmental disabilities of offspring,” Int. J. Dev. Neurosci. 16, 209–216.

    PubMed  CAS  Google Scholar 

  • Henry, C., Kabbaj, M., Simon, H., Le Moal M. and Maccari, S. (1994) “Prenatal stress increases the hypothalamo-pituitaryadrenal axis response in young and adult rats”, J. Neuroendocrinol. 6, 341–345.

    PubMed  CAS  Google Scholar 

  • Henry, C., Guegant, G., Cador, M., Arnauld, E., Arsaut, J., Le Moal, M. and Demotes-Mainard, J. (1995) “Prenatal stress in rats facilitates amphetamine-induced sensitization and induces long-lasting changes in dopamine receptors in the nucleus accumbens”, Brain Res. 685, 179–186.

    PubMed  CAS  Google Scholar 

  • Herman, J.P., Schafer, M.K., Young, E.A., Thompson, R., Douglass, J., Akil, H. and Watson, S.J. (1989) “Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis”, J. Neurosci. 9, 3072–3082.

    PubMed  CAS  Google Scholar 

  • Hiroshige, T., Honma, K. and Watanabe, K. (1982a) “Ontogeny of the circadian rhythm of plasma corticosterone in blind infantile rats”, J. Physiol. (Lond.) 325, 493–506.

    CAS  Google Scholar 

  • Hiroshige, T., Honma, K. and Watanabe, K., (1982b) “Possible zeitgebers for external entrainment of the circadian rhythm of plasma corticosterone in blind infantile rats”, J. Physiol. (Lond.) 325, 507–519.

    CAS  Google Scholar 

  • Hiroshige, T., Honma, K. and Watanabe K. (1982c) “Prenatal onset and maternal modifications of the circadian rhythm of plasma corticosterone in blind infantile rats”, J. Physiol. (Lond.) 325, 521–532.

    CAS  Google Scholar 

  • Holsboer, F. (1989) “Psychiatric implications of altered limbichypothalamic-pituitary-adrenocortical activity”, Eur. Arch. Psychiatry Neurol. Sci 238, 302–322.

    PubMed  CAS  Google Scholar 

  • Huttunen, M.O. (1971) “Persistent alteration of turnover of brain noradrenaline in the offspring of rats subjected to stress during pregnancy”, Nature 230, 53–55.

    PubMed  CAS  Google Scholar 

  • Issa, A.M., Rowe, W., Gauthier, S. and Meaney, M.J. (1990) “Hypothalamic-pituitary-adrenal activity in aged, cognitively impaired and cognitively unimpaired rats”, J. Neurosci. 10, 3247–3254.

    PubMed  CAS  Google Scholar 

  • Joffe, J.M. (1965) “Genotype and prenatal and premating stress interact to affect adult behavior in rats”, Science 150, 1844–1845.

    PubMed  CAS  Google Scholar 

  • Joffe, J.M. (1969) “Perinatal determinants of emotionality”, Ann. N.Y. Acad. Sci. 159, 668–680.

    PubMed  CAS  Google Scholar 

  • Joyce, E. M. and Iversen, S.D. (1979) “The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat”, Neurosci. Lett. 14, 207–212.

    PubMed  CAS  Google Scholar 

  • Jung, M.W. and McNaughton, B.L. (1993) “Spatial selectivity of unit activity in the hippocampal granular layer”, Hippocampus 3, 165–182.

    PubMed  CAS  Google Scholar 

  • Kant, G.J., Pastel, R.H., Bauman, R.A., Meininger, G.R., Maughan, K.R., Robinson, 3rd, T.N., Wright, W.L. and Covington, P.S. (1995) “Effects of chronic stress on sleep in rats”, Physiol. Behav. 57, 359–365.

    PubMed  CAS  Google Scholar 

  • Kirschbaum, C., Wolf, O.T., May, M., Wippich, W. and Hellhammer, D.H. (1996) “Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults”, Life Sci. 58, 1475–1483.

    PubMed  CAS  Google Scholar 

  • Koehl, M., Barbazanges, A., Le Moal, M. and Maccari, S. (1997) “Prenatal stress induces a phase advance of circadian corticosterone rhythm in adult rats which is prevented by postnatal stress”, Brain Res. 759, 317–320.

    PubMed  CAS  Google Scholar 

  • Koehl, M., Darnaudery, M., Dulluc, J., Van Reeth, O., Le Moal, M. and Maccari, S. (1999) “Prenatal stress alters circadian activity of hypothalamo-pituitary-adrenal axis and hippocampal corticosteroid receptors in adult rats of both gender”, J. Neurobiol. 40, 302–315.

    PubMed  CAS  Google Scholar 

  • Koehl, M., Bjijou, Y., Le Moal, M. and Cador, M. (2000) “Nicotineinduced locomotor activity is increased by preexposure of rats to prenatal stress”, Brain Res. 882, 196–200.

    PubMed  CAS  Google Scholar 

  • Koob, G.F. and Bloom, F.E. (1988) “Cellular and molecular mechanisms of drug dependence”, Science 242, 715–723.

    PubMed  CAS  Google Scholar 

  • Landfield, P.W., Waymire, J.C. and Lynch, G. (1978) “Hippocampal aging and adrenocorticoids: quantitative correlations”, Science 202, 1098–1102.

    PubMed  CAS  Google Scholar 

  • Lemaire, V., Koehl, M., Le Moal, M. and Abrous, D.N. (2000) “Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus”, Proc. Natl Acad. Sci. USA 97, 11032–11037.

    PubMed  CAS  Google Scholar 

  • Levine, S. (1962) “Plasma free corticosteroid response to electric shock in rats stimulated in infancy”, Science 135, 795–796.

    PubMed  CAS  Google Scholar 

  • Levine, S. and Lewis, G.W. (1959) “Critical period for the effects of infantile experience on maturation of stress”, Science, 129, 42–43.

    PubMed  CAS  Google Scholar 

  • Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., Sharma, S., Pearson, D., Plotsky, P.M. and Meaney, M.J. (1997) “Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress”, Science 277, 1659–1662.

    PubMed  CAS  Google Scholar 

  • Lupien, S., Lecours, A.R., Lussier, I., Schwartz, G., Nair, N.P. and Meaney, M.J. (1994) “Basal cortisol levels and cognitive deficits in human aging”, J. Neurosci. 14, 2893–2903.

    PubMed  CAS  Google Scholar 

  • Lupien, S.J., Gaudreau, S., Tchiteya, B.M., Maheu, F., Sharma, S., Nair, N.P., Hauger, R.L., McEwen, B.S. and Meaney, M.J. (1997) “Stress-induced declarative memory impairment in healthy elderly subjects: relationship to cortisol reactivity”, J. Clin. Endocrinol. Metab. 82, 2070–2075.

    PubMed  CAS  Google Scholar 

  • Lupien, S.J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N.P., Thakur, M., McEwen, B.S., Hauger, R.L. and Meaney, M.J. (1998) “Cortisol levels during human aging predict hippocampal atrophy and memory deficits”, Nat. Neurosci. 1, 69–73.

    PubMed  CAS  Google Scholar 

  • Maccari, S., Piazza, P.V., Deminiere, J.M., Angelucci, L., Simon, H. and Le Moal, M. (1991) “Hippocampal type I and type II corticosteroid receptor affinities are reduced in rats predisposed to develop amphetamine self-administration”, Brain Res. 548, 305–309.

    PubMed  CAS  Google Scholar 

  • Maccari, S., Piazza, P.V., Kabbaj, M., Barbazanges, A., Simon, H. and Le Moal, M. (1995) “Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress”, J. Neurosci. 15, 110–116.

    PubMed  CAS  Google Scholar 

  • Marinelli, M., Piazza, P.V., Deroche, V., Maccari, S., Le Moal, M. and Simon, H. (1994) “Corticosterone circadian secretion differentially facilitates dopamine-mediated psychomotor effect of cocaine and morphine”, J Neurosci. 14, 2724–2731.

    PubMed  CAS  Google Scholar 

  • Marti, O., Marti, J. and Armario, A. (1994) “Effects of chronic stress on food intake in rats: influence of stressor intensity and duration of daily exposure” Physiol. Behav. 55, 747–753.

    PubMed  CAS  Google Scholar 

  • McEwen, B.S. and Sapolsky, R.M. (1995) “Stress and cognitive function”, Curr. Opin. Neurobiol. 5, 205–216.

    PubMed  CAS  Google Scholar 

  • McEwen, B.S., De Kloet, E.R. and Rostene, W. (1986) “Adrenal steroid receptors and actions in the nervous system”, Physiol. Rev. 66, 1121–1188.

    PubMed  CAS  Google Scholar 

  • McGaugh, J.L. (1989) “Dissociating learning and performance: drug and hormone enhancement of memory storage”, Brain Res. Bull. 23, 339–345.

    PubMed  CAS  Google Scholar 

  • McNaughton, B.L., Barnes, C.A., Meltzer, J. and Sutherland, R.J. (1989) “Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge”, Exp. Brain Res. 76, 485–496.

    PubMed  CAS  Google Scholar 

  • Meaney, M.J., Aitken, D.H., Bodnoff, S.R., Iny, L.J. and Sapolsky, R.M. (1985a) “The effects of postnatal handling on the development of the glucocorticoid receptor systems and stress recovery in the rat”, Prog Neuro-Psychopharmacol. Biol. Psychiatry 9, 731–734.

    CAS  Google Scholar 

  • Meaney, M.J., Aitken, D.H., Bodnoff, S.R., Iny, L.J., Tatarewicz, J.E. and Sapolsky, R.M. (1985b) “Early postnatal handling alters glucocorticoid receptor concentrations in selected brain regions”, Behav. Neurosci. 99, 765–770.

    PubMed  CAS  Google Scholar 

  • Meaney, M.J., Sapolsky, R.M. and McEwen, B.S. (1985c) “The development of the glucocorticoid receptor system in the rat limbic brain I. Ontogeny and autoregulation”, Brain Res. 350, 159–164.

    PubMed  CAS  Google Scholar 

  • Meaney, M.J., Sapolsky, R.M. and McEwen, B.S. (1985d) “The development of the glucocorticoid receptor system in the rat limbic brain II. An autoradiographic study”, Brain Res. 350, 165–168.

    PubMed  CAS  Google Scholar 

  • Meaney, M.J., Bhatnagar, S., Larocque, S., McCormick, C., Shanks, N., Sharma, S., Smythe, J., Viau, V. and Plotsky, P.M. (1993) “Individual differences in the hypothalamic-pituitaryadrenal stress response and the hypothalamic CRF system”, Ann. N.Y. Acad. Sci. 697, 70–85.

    PubMed  CAS  Google Scholar 

  • Milkovic, S., Milkovic, K. and Paunovic, J. (1973) “The initiation of fetal adrenocorticotrophic activity in the rat”, Endocrinology 92, 380–384.

    PubMed  CAS  Google Scholar 

  • Montaron, M.F., Petry, K.G., Rodriguez, J.J., Marinelli, M., Aurousseau, C., Rougon, G., Le, Moal, M. and Abrous, D.N. (1999) “Adrenalectomy increases neurogenesis but not PSANCAM expression in aged dentate gyrus”, Eur. J. Neurosci. 11, 1479–1485.

    PubMed  CAS  Google Scholar 

  • Ohkawa, T., Takeshita, S., Murase, T., Kambegawa, A., Okinaga, S. and Arai, K. (1991) “Ontogeny of the response of the hypothalamo-pituitary-adrenal axis to maternal immobilization stress in rats”, Endocrinol. Jpn 38, 187–194.

    PubMed  CAS  Google Scholar 

  • pardridge, W.M., Sakiyama, R. and Judd, H.L. (1983) “Proteinbound corticosteroid in human serum is selectively transported into rat brain and liver in vivo”, J. Clin. Endocrinol. Metab. 57, 160–165.

    PubMed  CAS  Google Scholar 

  • Piazza, P.V. and Le Moal, M.L. (1996) “Pathophysiological basis of vulnerability to drug abuse: role of an interaction between stress, glucocorticoids, and dopaminergic neurons”, Annu. Rev. Pharmacol. Toxicol. 36., 359–378.

    PubMed  CAS  Google Scholar 

  • Piazza, P.V., Deminiere, J.M., Le Moal, M. and Simon, H. (1989) “Factors that predict individual vulnerability to amphetamine self-administration”, Science 245., 1511–1513.

    PubMed  CAS  Google Scholar 

  • Piazza, P.V., Maccari, S., Deminiere, J.M., Le Moal, M., Mormede, P. and Simon, H. (1991a) “Corticosterone levels determine individual vulnerability to amphetamine self-administration”, Proc. Natl Acad. Sci. USA 88, 2088–2092.

    PubMed  CAS  Google Scholar 

  • Piazza, P.V., Rouge-Pont, F., Deminiere, J.M., Kharoubi, M., Le Moal, M. and Simon, H. (1991b) “Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration”, Brain Res. 567, 169–174.

    PubMed  CAS  Google Scholar 

  • Rapp, P.R. and Amaral, D.G. (1992) “Individual differences in the cognitive and neurobiological consequences of normal aging”, Trends Neurosci. 15, 340–345.

    PubMed  CAS  Google Scholar 

  • Ratka, A., Sutanto, W., Bloemers, M. and de Kloet, E.R. (1989) “On the role of brain mineralocorticoid (type I) and glucocorticoid (type II) receptors in neuroendocrine regulation”, Neuroendocrinology 50, 117–123.

    PubMed  CAS  Google Scholar 

  • Reppert S.M. and Schwartz, W.J. (1983) “Maternal coordination of the fetal biological clock in utero”, Science 220, 969–971.

    PubMed  CAS  Google Scholar 

  • Reul, J.M. and de Kloet, E.R. (1985) “Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation”, Endocrinology 117, 2505–2511.

    PubMed  CAS  Google Scholar 

  • Reul, J.M. and de Kloet, E.R. (1986) “Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis”, J. Steroid Biochem. 24, 269–272.

    PubMed  CAS  Google Scholar 

  • Robbins, T.W. and Everitt, B.J. (1982) “Functional studies of the central catecholamines”, Int. Rev. Neurobiol. 23, 303–365.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, P., Sutanto, W., Levine, S. and De Kloet, E.R. (1988) “Ontogeny of type I and type II corticosteroid receptors in the rat hippocampus”, Brain Res. 470, 113–118.

    PubMed  CAS  Google Scholar 

  • Rouge-Pont, F., Marinelli, M., Le Moal, M., Simon, H. and Piazza, P.V. (1995) “Stress-induced sensitization and glucocorticoids. II. Sensitization of the increase in extracellular dopamine induced by cocaine depends on stress-induced corticosterone secretion”, J. Neurosci. 15, 7189–7195.

    PubMed  CAS  Google Scholar 

  • Rouge-Pont, F., Deroche, V., Le Moal, M. and Piazza, P.V. (1998) “Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone” Eur. J. Neurosci. 10, 3903–3907.

    PubMed  CAS  Google Scholar 

  • Sandi, C., Loscertales, M. and Guaza, C. (1997) “Experiencedependent facilitating effect of corticosterone on spatial emmory formation in the water maze”, Eur. J. Neurosci. 9, 637–642.

    PubMed  CAS  Google Scholar 

  • Sapolsky, R.M. (1992), Stress, the Aging Brain, and the Mechanisms of Neuron Death (MIT Press, Cambridge).

    Google Scholar 

  • Sapolsky, R.M. and Meaney, M.J. (1986) “Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period”, Brain Res. 396, 64–76.

    PubMed  CAS  Google Scholar 

  • Sapolsky, R.M., Krey, L.C. and McEwen, B.S. (1984) “Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response”, Proc. Natl Acad. Sci. USA 81, 6174–6177.

    PubMed  CAS  Google Scholar 

  • Sapolsky, R.M., Krey, L.C. and McEwen, B.S. (1986) “The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis”, Endocr. Rev. 7, 284–301.

    PubMed  CAS  Google Scholar 

  • Schopke, R., Wolfer, D.P., Lipp, H.P. and Leisinger-Trigona, M.C. (1991) “Swimming navigation and structural variations of the infrapyramidal mossy fibers in the hippocampus of the mouse”, Hippocampus 1, 315–328.

    PubMed  CAS  Google Scholar 

  • Schwegler, H. and Crusio, W.E. (1995) “Correlations between radial-maze learning and structural variations of septum and hippocampus in rodents”, Behav. Brain Res. 67, 29–41.

    PubMed  CAS  Google Scholar 

  • Spencer, R.L., Kim, P.J., Kalman, B.A. and Cole, M.A. (1998) “Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity”, Endocrinology 139, 2718–2726.

    PubMed  CAS  Google Scholar 

  • Squire, L.R. (1992) “Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans”, Psychol. Rev. 99, 195–231, Published erratum appears in Psychol. Rev. 99(3): Jul. (1992) 582.

    PubMed  CAS  Google Scholar 

  • Stanfield, B.B. and Trice, J.E. (1988) “Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections”, Exp. Brain. Res. 72, 399–406.

    PubMed  CAS  Google Scholar 

  • Stenzel-Poore, M.P., Heinrichs, S.C., Rivest, S., Koob, G.F. and Vale, W.W. (1994) “Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior”, J. Neurosci. 14, 2579–2584.

    PubMed  CAS  Google Scholar 

  • Suchecki, D., Rosenfeld, P. and Levine, S. (1993) “Maternal regulation of the hypothalamic-pituitary-adrenal axis in the infant rat: the roles of feeding and stroking”, Brain Res. Dev. Brain Res. 75, 185–192.

    PubMed  CAS  Google Scholar 

  • Suchecki, D., Nelson, D.Y., Van Oers, H. and Levine, S. (1995) “Activation and inhibition of the hypothalamic-pituitaryadrenal axis of the neonatal rat: effects of maternal deprivation”, Psychoneuroendocrinology 20, 169–182.

    PubMed  CAS  Google Scholar 

  • Takahashi, L.K., Turner, J.G. and Kalin, N.H. (1992) “Prenatal stress alters brain catecholaminergic activity and potentiates stress-induced behavior in adult rats”, Brain Res. 574, 131–137.

    PubMed  CAS  Google Scholar 

  • Vaid, R.R., Yee, B.K., Shalev, U., Rawlins, J.N., Weiner, I., Feldon, J. and Totterdell, S. (1997) “Neonatal nonhandling and in utero prenatal stress reduce the density of NADPH-diaphorase-reactive neurons in the fascia dentata and Ammon's horn of rats”, J. Neurosci. 17, 5599–5609.

    PubMed  CAS  Google Scholar 

  • Vallée, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H. and Maccari, S. (1997) “Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress-induced corticosterone secretion”, J. Neurosci. 17, 2626–2636.

    PubMed  Google Scholar 

  • Vallée, M., MacCari, S., Dellu, F., Simon, H., Le Moal, M. and Mayo, W. (1999) “Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat”, Eur. J. Neurosci. 11, 2906–2916.

    PubMed  Google Scholar 

  • Veldhuis, H.D., De Kloet, E.R., Van Zoest, I and Bohus, B. (1982) “Adrenalectomy reduces exploratory activity in the rat: a specific role of corticosterone”, Horm. Behav. 16, 191–198.

    PubMed  CAS  Google Scholar 

  • Ward, I.L. (1972) “Prenatal stress feminizes and demasculinizes the behavior of males”, Science 175, 82–84.

    PubMed  CAS  Google Scholar 

  • Ward, I.L. (1984) “The prenatal stress syndrome: current status”, Psychoneuroendocrinology 9, 3–11.

    PubMed  CAS  Google Scholar 

  • Walker, C.D., Scribner, K.A., Cascio, C.S and Dallman, M.E. (1991) “The pituitary-adrenocortical system of neonatal rats is responsive to stress throughout development in a time-dependent and stressor-specific fashion”, Endocrinology 128, 1385–1395.

    PubMed  CAS  Google Scholar 

  • Weinstock, M. (1997) “Does prenatal stress impair coping and regulation of hypothalamic-pituitary-adrenal axis?”, Neurosci. Biobehav. Rev. 21, 1–10.

    PubMed  CAS  Google Scholar 

  • Weinstock, M. (2001) “Alterations induced by gestational stress in brain morphology and behaviour of the offspring”, Prog. Neurobiol. 65, 427–451.

    PubMed  CAS  Google Scholar 

  • West, M.J. and King, A.P. (1987) “Settling nature and nurture into an ontogenetic niche”, Dev. Psychobiol. 20, 549–562.

    PubMed  CAS  Google Scholar 

  • Yau, J.L., Olsson, T., Morris, R.G., Meaney, M.J. and Seckl, J.R. (1995) “Glucocorticoids, hippocampal corticosteroid receptor gene expression and antidepressant treatment: relationship with spatial learning in young and aged rats”, Neuroscience 66, 571–581.

    PubMed  CAS  Google Scholar 

  • Zarrow, M.X., Philpott, J.E. and Denenberg, V.H. (1970) “Passage of 14C-4-corticosterone from the rat mother to the foetus and neonate”, Nature 226, 1058–1059.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koehl, M., Lemaire, V., Mayo, W. et al. Individual vulnerability to substance abuse and affective disorders: Role of early environmental influences. neurotox res 4, 281–296 (2002). https://doi.org/10.1080/1029842021000010866

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/1029842021000010866

Keywords

Navigation