Skip to main content

Advertisement

Log in

SYBR Green-based quantitation of human T-lymphotropic virus type 1 proviral load in Peruvian patients with neurological disease and asymptomatic carriers: Influence of clinical status, sex, and familial relatedness

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

To evaluate the human T-lymphotropic virus type 1 (HTLV-1) proviral DNA load in patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and asymptomatic HTLV-1 carriers, a SYBR Green-based real-time quantitative polymerase chain reaction (qPCR) assay was developed. HTLV-1 proviral DNA in peripheral blood mononuclear cells (PBMCs) was quantified using primers targeting the pX region and the HTLV-1 copy number normalized to the amount of ERV-3 (Endogenous Retrovirus 3) cellular DNA. Thirty-three asymptomatic HTLV-1 carriers (ACs) and 39 patients with HAM/TSP were enrolled. Some participants were relatives of HAM/TSP cases (16 ACs and 7 patients with HAM/TSP). On multiple linear regression analysis, the authors found a significant association between clinical status and HTLV-1 proviral load (P < .01), but only among women. ACs showed a median proviral load of 561 copies per 104 PBMCs (interquartile range: 251–1623). In HAM/TSP patients, the median proviral load was 1783 (1385–2914). ACs related to HAM/TSP patients presented a relatively high proviral load (median 1152); however, the association between relatedness to a HAM/TSP patient and proviral load was not significant (P = .1). In HAM/TSP patients, no association was found between proviral load and disease duration, progression or severity. The fact that the effect of HAM/TSP upon the HTLV-1 proviral load differed between sexes and the finding of a high proviral load among asymptomatic relatives of HAM/TSP patients suggest that not yet identified genetic or environmental factors influence the pathogenesis of HTLV-1 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht B, Collins ND, Newbound GC, Ratner L, Lairmore MD (1998). Quantification of human T-cell lymphotropic virus type 1 proviral load by quantitative competitive polymerase chain reaction. J Virol Methods 75: 123–40.

    Article  PubMed  CAS  Google Scholar 

  • Asquith B, Mosley AJ, Barfield A, Marshall SE, Heaps A, Goon P, Hanon E, Tanaka Y, Taylor GP, Bangham CR (2005a). A functional CD8+ cell assay reveals individual variation in CD8+ cell antiviral efficacy and explains differences in human T-lymphotropic virus type 1 proviral load. J Gen Virol 86: 1515–1523.

    Article  PubMed  CAS  Google Scholar 

  • Asquith B, Mosley AJ, Heaps A, Tanaka Y, Taylor GP, McLean AR, Bangham CR (2005b). Quantification of the virus-host interaction in human T-lymphotropic virus I infection. Retrovirology 2: 75.

    Article  PubMed  Google Scholar 

  • Cimarelli A, Duclos CA, Gessain A, Cattaneo E, Casoli C, Biglione M, Mauclere P, Bertazzoni U (1995). Quantification of HTLV-II proviral copies by competitive polymerase chain reaction in peripheral blood mononuclear cells of Italian injecting drug users, central Africans, and Amerindians. J Acquir Immune Defic Syndr Hum Retrovirol 10: 198–204.

    Article  PubMed  CAS  Google Scholar 

  • Dehée A, Césaire R, Désiré N, Lézin A, Bourdonné O, Béra O, Plumelle Y, Smadja D, Nicolas JC (2002). Quantitation of HTLV-I proviral load by a TaqMan real-time PCR assay. J Virol Methods 102: 37–51.

    Article  PubMed  Google Scholar 

  • de The G, Bomford R (1993). An HTLV-I vaccine: why, how, for whom? AIDS Res Hum Retroviruses 9: 381–386.

    Article  PubMed  Google Scholar 

  • Dumas M, Houinato D, Verdier M, Zohoun T, Josse R, Bonis J, Zohoun I, Massougbodji A, Denis F (1991). Seroepidemiology of human T-cell lymphotropic virus type I/II in Benin (West Africa). AIDS Res Hum Retroviruses 7: 447–451.

    Article  PubMed  CAS  Google Scholar 

  • Estes MC, Sevall JS (2003). Multiplex PCR using real-time DNA amplification for the rapid detection and quantitation of HTLV-I or II. Mol Cell Probes 17: 59–68.

    Article  PubMed  CAS  Google Scholar 

  • Gessain A, Barin F, Vernant JC, Gout O, Maurs L, Calender A, de The G (1985). Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 2: 407–410.

    Article  PubMed  CAS  Google Scholar 

  • Gessain A, Gout O (1992). Chronic myelopathy associated with human T-lymphotropic virus type I (HTLV-I). Ann Intern Med 117: 933–946.

    PubMed  CAS  Google Scholar 

  • Gotuzzo E, Arango C, de Queiroz-Campos A, Isturiz RE (2000). Human T-cell lymphotropic virus-I in Latin America. Infect Dis Clin North Am 14: 211–239.

    Article  PubMed  CAS  Google Scholar 

  • Gotuzzo E, Cabrera J, Deza L, Verdonck K, Vandamme AM, Cairampoma R, Vizcarra D, Cabada M, Narvarte G, De las Casas C (2004). Clinical characteristics of patients in Peru with human T cell lymphotropic virus type 1-associated tropical spastic paraparesis. Clin Infect Dis 39: 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Hanada S, Uematsu T, Iwahashi M, Nomura K, Utsunomiya A, Kodama M, Ishibashi K, Terada A, Saito T, Makino T, et al (1989). The prevalence of human T-cell leukemia virus type I infection in patients with hematologic and nonhematologic diseases in an adult T-cell leukemiaendemic area of Japan. Cancer 64: 1290–1295.

    Article  PubMed  CAS  Google Scholar 

  • Harrington WJ Jr, Sheremata WA, Snodgrass SR, Emerson S, Phillips S, Berger JR (1991). Tropical spastic paraparesis/ HTLV-1-associated myelopathy (TSP/HAM): treatment with an anabolic steroid danazol. AIDS Res Hum Retroviruses 7: 1031–1034.

    Article  PubMed  Google Scholar 

  • Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita KI, Shirakawa S, Miyoshi I (1981). Adult-T cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci U S A 78: 6476–6480.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara S, Okayama A, Stuver S, Horinouchi H, Shioiri S, Murai K, Kubota T, Yamashita R, Tachibana N, Tsubouchi H, et al (1994). Association of HTLV-I antibody profile of asymptomatic carriers with proviral DNA levels of peripheral blood mononuclear cells. J Acquir Immune Defic Syndr 7: 199–203.

    PubMed  CAS  Google Scholar 

  • Jacobson S, Shida H, McFarlin DE, Fauci AS, Koenig S (1990). Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I-associated neurological disease. Nature 348: 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Jeffery KJ, Siddiqui AA, Bunce M, Lloyd AL, Vine AM, Witkover AD, Izumo S, Usuku K, Welsh KI, Osame M, Bangham CR (2000). The influence of HLA class I alleles and heterozygosity on the outcome of human T cell lymphotropic virus type I infection. J Immunol 165: 7278–7284.

    PubMed  CAS  Google Scholar 

  • Jeffery KJ, Usuku K, Hall SE, Matsumoto W, Taylor GP, Procter J, Bunce M, Ogg GS, Welsh KI, Weber JN, et al (1999). HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc Natl Acad Sci U S A 96: 3848–3853.

    Article  PubMed  CAS  Google Scholar 

  • Kamihira S, Dateki N, Sugahara K, Hayashi T, Harasawa H, Minami S, Hirakata Y, Yamada Y (2003). Significance of HTLV-1 proviral load quantification by real-time PCR as a surrogate marker for HTLV-1-infected cell count. Clin Lab Haem 25, 111–117.

    Article  CAS  Google Scholar 

  • Kaplan JE, Osame M, Kubota H, Igata A, Nishitani H, Maeda Y, Khabbaz RF, Janssen RS (1990). The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr 3: 1096–1101.

    PubMed  CAS  Google Scholar 

  • Kira J, Koyanagi Y, Yamada T, Itoyama Y, Goto I, Yamamoto N, Sasaki H, Sakaki Y (1991). Increased HTLV-I proviral DNA in HTLV-I-associated myelopathy: a quantitative polymerase chain reaction study. Ann Neurol 29: 194–201.

    Article  PubMed  CAS  Google Scholar 

  • Kira J, Nakamura M, Sawada T, Koyanagi Y, Ohori N, Itoyama Y, Yamamoto N, Sakaki Y, Goto I (1992). Antibody titers to HTLV-I-p40tax protein and gag-env hybrid protein in HTLV-I-associated myelopathy/tropical spastic paraparesis: correlation with increased HTLV-I proviral DNA load. J Neurol Sci 107: 98–104.

    Article  PubMed  CAS  Google Scholar 

  • Kubota R, Fujiyoshi T, Izumo S, Yashiki S, Maruyama I, Osame M, Sonoda S (1993). Fluctuation of HTLV-I proviral DNA in peripheral blood mononuclear cells of HTLV-I-associated myelopathy. J Neuroimmunol 42: 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Kurtzke JF (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33: 1444–1452.

    PubMed  CAS  Google Scholar 

  • Lee TH, Chafets DM, Busch MP, Murphy EL (2004). Quantitation of HTLV-I and II proviral load using real-time quantitative PCR with SYBR Green chemistry. J Clin Virol 31: 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Lima MA, Bica RB, Araujo AQ (2005). Gender influence on the progression of HTLV-I-associated myelopathy/tropical spastic paraparesis. J Neurol Neurosurg Psychiatry 76: 294–296.

    Article  PubMed  CAS  Google Scholar 

  • Mackay IM, Arden KE, Nitsche A (2002). Real-time PCR in virology. Nucleic Acids Res 30: 1292–1305.

    Article  PubMed  CAS  Google Scholar 

  • Mahoney FI, Barthel DW (1965). Functional evaluation: the Barthel Index. Md State Med J 14: 61–65.

    PubMed  CAS  Google Scholar 

  • Maloney EM, Cleghorn FR, Morgan OS, Rodgers-Johnson P, Cranston B, Jack N, Blattner WA, Bartholomew C, Manns A (1998). Incidence of HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) in Jamaica and Trinidad. J Acquir Immune Defic Syndr Hum Retrovirol 17: 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki T, Nakagawa M, Nagai M, Usuku K, Higuchi I, Arimura K, Kubota H, Izumo S, Akiba S, Osame M (2001). HTLV-I proviral load correlates with progression of motor disability in HAM/TSP: analysis of 239 HAM/TSP patients including 64 patients followed up for 10 years. J NeuroVirol 7: 228–234.

    Article  PubMed  CAS  Google Scholar 

  • Miley WJ, Suryanarayana K, Manns A, Kubota R, Jacobson S, Lifson JD, Waters D (2000). Real-time polymerase chain reaction assay for cell-associated HTLV type I DNA viral load. AIDS Res Hum Retroviruses 16: 665–675.

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi I, Kubonishi I, Yoshimoto S, Akagi T, Ohtsuki Y, Shiraishi Y, Nagata K, Hinuma Y (1981). Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature 294: 770–771.

    Article  PubMed  CAS  Google Scholar 

  • Montanheiro PA, Oliveira AC, Posada-Vergara MP, Milagres AC, Tauil C, Marchiori PE, Duarte AJ, Casseb J (2005). Human T-cell lymphotropic virus type I (HTLV-I) proviral DNA viral load among asymptomatic patients and patients with HTLV-I-associated myelopathy/tropical spastic paraparesis. Braz J Med Biol Res 38: 1643–1647.

    Article  PubMed  CAS  Google Scholar 

  • Murphy EL, Figueroa JP, Gibbs WN, Holding-Cobham M, Cranston B, Malley K, Bodner AJ, Alexander SS, Blattner WA (1991). Human T-lymphotropic virus type I (HTLV-I) seroprevalence in Jamaica. I. Demographic determinants. Am J Epidemiol 133: 1114–1124.

    PubMed  CAS  Google Scholar 

  • Murphy EL, Hanchard B, Figueroa JP, Gibbs WN, Lofters WS, Campbell M, Goedert JJ, Blattner WA (1989). Modelling the risk of adult T-cell leukemia/lymphoma in persons infected with human T-lymphotropic virus type I. Int J Cancer 43: 250–253.

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Brennan MB, Sakai JA, Mora CA, Jacobson S (2001). CD8(+) T cells are an in vivo reservoir for human T-cell lymphotropic virus type I. Blood 98: 1858–1861.

    Article  PubMed  CAS  Google Scholar 

  • Nagai M, Usuku K, Matsumoto W, Kodama D, Takenouchi N, Moritoyo T, Hashiguchi S, Ichinose M, Bangham CR, Izumo S, Osame M (1998). Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J NeuroVirol 4: 586–593.

    Article  PubMed  CAS  Google Scholar 

  • Nicot C, Astier-Gin T, Edouard E, Legrand E, Moynet D, Vital A, Londos-Gagliardi D, Moreau JP, Guillemain B (1993). Establishment of HTLV-I-infected cell lines from French, Guianese and West Indian patients and isolation of a proviral clone producing viral particles. Virus Res 30: 317–334.

    Article  PubMed  CAS  Google Scholar 

  • Olindo S, Lezin A, Cabre P, Merle H, Saint-Vil M, Edimonana Kaptue M, Signate A, Cesaire R, Smadja D (2005). HTLV-1 proviral load in peripheral blood mononuclear cells quantified in 100 HAM/TSP patients: a marker of disease progression. J Neurol Sci 237: 53–59.

    Article  PubMed  Google Scholar 

  • Osame M (1990). Review of WHO Kagoshima meeting and diagnostic guidelines for HAM/TSP. In: Human retrovirology: HTLV. Blattner WA (ed.). New York: Raven Press, pp 191–197.

    Google Scholar 

  • Osame M, Usuku K, Izumo S, Ijichi N, Amitani H, Igata A, Matsumoto M, Tara M (1986). HTLV-I associated myelopathy, a new clinical entity. Lancet 1: 1031–1032.

    Article  PubMed  CAS  Google Scholar 

  • Ouattara SA, Gody M, de The G (1989). Prevalence of HTLV-I compared to HIV-1 and HIV-2 antibodies in different groups in the Ivory Coast (West Africa). J Acquir Immune Defic Syndr 2: 481–485.

    PubMed  CAS  Google Scholar 

  • Papin JF, Vahrson W, Dittmer DP (2004). SYBR Green-based real-time quantitative PCR assay for detection of West Nile Virus circumvents false-negative results due to strain variability. J Clin Microbiol 42: 1511–1518.

    Article  PubMed  CAS  Google Scholar 

  • Parker CE, Daenke S, Nightingale S, Bangham CR (1992). Activated, HTLV-1-specific cytotoxic T-lymphocytes are found in healthy seropositives as well as in patients with tropical spastic paraparesis. Virology 188: 628–636.

    Article  PubMed  CAS  Google Scholar 

  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980). Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 77: 7415–7419.

    Article  PubMed  CAS  Google Scholar 

  • Proietti FA, Carneiro-Proietti AB, Catalan-Soares BC, Murphy EL (2005). Global epidemiology of HTLV-I infection and associated diseases. Oncogene 24: 6058–6068.

    Article  PubMed  CAS  Google Scholar 

  • Takenouchi N, Yamano Y, Usuku K, Osame M, Izumo S (2003). Usefulness of proviral load measurement for monitoring of disease activity in individual patients with human T-lymphotropic virus type I-associated myelopathy/tropical spastic paraparesis. J NeuroVirol 9: 29–35.

    PubMed  Google Scholar 

  • Taylor GP, Tosswill JH, Matutes E, Daenke S, Hall S, Bain BJ, Davis R, Thomas D, Rossor M, Bangham CR, Weber JN (1999). Prospective study of HTLV-I infection in an initially asymptomatic cohort. J Acquir Immune Defic Syndr 22: 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Vine AM, Heaps AG, Kaftantzi L, Mosley A, Asquith B, Witkover A, Thompson G, Saito M, Goon PK, Carr L, et al (2004). The role of CTLs in persistent viral infection: cytolytic gene expression in CD8+ lymphocytes distinguishes between individuals with a high or low proviral load of human T cell lymphotropic virus type 1. J Immnunol 173: 5121–5129.

    CAS  Google Scholar 

  • Vitone F, Gibellini D, Schiavone P, D’Antuono A, Gianni L, Bon I Re MC (2006). Human T-lymphotropic virus type 1 (HTLV-1) prevalence and quantitative detection of DNA proviral load in individuals with indeterminate/positive serological results. BMC Infect Dis 6: 41.

    Article  PubMed  Google Scholar 

  • Yamano Y, Nagai M, Brennan M, Mora CA, Soldan SS, Tomaru U, Takenouchi N, Izumo S, Osame M, Jacobson S (2002). Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virusspecific CD8(+) T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood 99: 88–94.

    Article  PubMed  CAS  Google Scholar 

  • Yuan CC, Miley W, Waters D (2001). A quantification of human cells using an ERV-3 real time PCR assay. J Virol Methods 91: 109–117.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Adaui.

Additional information

This work was supported by the Directorate-General for Development Cooperation (DGDC) of the Belgian Government (framework agreement 02, project 95501) and by a specific “Own Initiative on HTLV-1 in Peru,” sponsored by the Flemish Interuniversity Council (VLIR).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adaui, V., Verdonck, K., Best, I. et al. SYBR Green-based quantitation of human T-lymphotropic virus type 1 proviral load in Peruvian patients with neurological disease and asymptomatic carriers: Influence of clinical status, sex, and familial relatedness. Journal of NeuroVirology 12, 456–465 (2006). https://doi.org/10.1080/13550280601039634

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280601039634

Keywords

Navigation